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Abstract

I investigate dynamic duopoly competition in quality and price. The firms invest in product

quality and generate endogenous vertical differentiation. They compete in a Hotelling market,

which exhibits exogenous horizontal differentiation. Depending on the cost of quality investment,

firms either sustain low quality levels through upgrading deterrence or engage in fierce direct

competition. These two modes of competition generate non-monotonic patterns in upgrading

frequency and investment efficiency. I also show that horizontal and vertical differentiation

interact in cost-dependent ways: when upgrading is cheap, they are substitutes – greater hor-

izontal differentiation strengthens market power, raises profits, and intensifies quality rivalry

while keeping qualities balanced. When upgrading is expensive, they are complements – greater

horizontal differentiation makes leadership less profitable, softening quality rivalry and sustain-

ing vertical gaps. My results provide a parsimonious framework for non-monotonic investment

incentives and highlight how horizontal and vertical differentiation jointly shape the dynamics

of competition and welfare in markets.

1 Introduction

Competition among firms in markets with heterogeneous consumers is a classic topic in economics

(Launhardt, 1885; Hotelling, 1929; Salop, 1979). Firms frequently serve distinct market niches to

appeal to consumers with specific preferences. Restaurants offer different ethnic foods and dish

designs to attract specific types of consumers. Streaming platforms are often categorized by the
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genres of the programming. Note-taking applications emphasize either efficient organizational tools

or refined handwriting interfaces to attract business professionals and students, respectively.

Catering to consumers’ heterogenous tastes, however, is just one dimension of competition.

Firms also compete and maintain product quality, a task that is subject to unexpected shocks and

requires constant vidulance and frequent rounds of investment. For restaurants, an example of a

quality shock is equipment malfunction which degrades the flavor or visual appeal of the food. For

TV shows, a quality shock can be a leading star departing a series for personal reasons.1 For apps, a

quality shock can be software bugs that reduce its usability.2 Alternatively, even if a firm maintains

its own quality, it may nevertheless fall behind when rivals upgrade their products, thereby altering

the relative ranking in the market.

Formally, firms compete along multiple dimensions of differentiation. In the examples above,

horizontal differentiation reflects differences in heterogenous consumer tastes, while vertical differ-

entiation captures differences in product quality. In this paper I examine how firms invest in and

sustain product quality when facing diverse consumers. More specifically, the questions addressed

are as follows: Does consumer heterogeneity intensify or dampen quality competition? How does

the interaction between the two dimensions of product differentiation depend on the cost of quality

investment? In terms of welfare, when facing heterogeneous consumers, do competing firms invest

in quality efficiently, over-invest, or under-invest?

To answer these questions, I develop a dynamic Hotelling model, in which two firms engage in

quality and price competition. Horizontally, duopolists are located at either end of the spectrum

of tastes and consumers incur exogenous linear transportation costs. Vertically, the firms endoge-

nously determine their quality levels over time. High-quality products may experience unanticipated

deterioration due to quality shocks (equipment failure, loss of key personnel , discovery of sofware

bugs), whereas low-quality products can be restored to high quality through costly investment,

which is referred to as a product upgrade hereafter.

The two firms engage in quality competition in discrete time over an infinite horizon. In each

period, firms with low-quality products first decide whether to upgrade. If both products are of

low quality, these upgrading decisions are made simultaneously. After the firms’ upgrades, nature

randomly and independently places shocks on high-quality products. The period’s quality levels

are then realized, and consumers arrive. Firms set prices, and each consumer chooses whether to

purchase at most one unit. The period ends once all purchasing decisions are made, and the current

1As an example, Two and a Half Men (CBS, 2003 – 2015) replaced Charlie Sheen with Ashton Kutcher in 2011

and survived for another four seasons.
2As an example, Notability recognized that they were experiencing performance issues leading to overheating the

users’ devices and draining battery life. Some other apps experienced more significant issues, such as “the Sonos

app fiasco”, which even led to Sonos’ chief marketing officer, chief product officer, and eventually CEO leaving the

company.
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consumers exit the market. Both the firms’ upgrades and nature’s shocks are publicly observed. I

focus on symmetric Markov perfect equilibria of this dynamic game.

My main findings are as follows. First, firms’ upgrading frequencies are non-monotonic in up-

grading costs. Specifically, two distinct competition modes emerge: upgrading deterrence when

quality investment is relatively cheap, and direct competition when it is relatively costly. In the

upgrading-deterrence mode, when one firm possesses a high-quality product, the firms engage in

“quality wars”, where the low-quality firm actively upgrades to catch up. This costly rivalry serves

as a deterrent, leading both firms to refrain from upgrading when both products are of low quality.

As quality investment becomes more expensive, such wars cease to be a credible deterrent, and

the firms shift to direct competition. In this mode, the firms employ mixed investment strategies

to manage their rivals’ quality upgrading incentives by controlling the rivals’ future prospects of

investment. When quality is low, each firm invests with positive probability to gain either an im-

mediate or future quality advantage. The observed non-monotonic pattern arises precisely from the

switch between these two modes: in the upgrading-deterrence regime, firms abstain from upgrading

when both offer low-quality products, whereas in the direct-competition regime – especially when

upgrading costs are moderately low – they always upgrade in that state.

Second, related to the non-monotonicity in the upgrading frequency, I show that the firms

under-invest at relatively low or relatively high upgrading costs compared with an efficient social

planner. Two distinct forces drive this under-investment. At relatively-low upgrading costs, the

firms under-invest because of the deterrence from costly quality wars. At relatively-high upgrading

costs, the firms under-invest because of the failure to internalize consumer surplus. When the

upgrading cost is intermediate, the firms engage in direct competition and over-invest.

Finally, my model also demonstrates that horizontal differentiation influences the firms’ compe-

tition behavior via the upgrading cost, which in turn modifies the levels of vertical differentiation.

The interactions between the two dimensions of product differentiation are driven by fully dynamic

forces. When upgrades are cheap and firms have similar quality levels, greater horizontal differenti-

ation strengthens market power, raises profits, and intensifies quality competition, thereby reducing

vertical differentiation. When upgrades are expensive, however, one firm is more likely to emerge as

the quality leader. Greater horizontal differentiation then erodes the leader’s profits from market

dominance, making leadership less attractive and discouraging rivals from catching up, reinforcing

vertical differentiation. In other words, the dynamic effect of horizontal differentiation is dominant-

competition-state enhancing: it intensifies the competition if the competition is relatively intense,

and it dampens the competition if the competition is relatively weak. That is, the two dimensions

of differentiation exhibit substitution effects at lower upgrading costs and complementary effects

when upgrading costs are higher.

In this paper, I highlight the effects of horizontal differentiation in firms’ dynamic quality
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competition with a parsimonious framework. By introducing horizontal differentiation, the model

generates under-investment in quality and explains why persistent low-quality levels can be main-

tained in real-world competition scenarios, which are both not possible if horizontal differentiation

is absent. For an example of under-investment with low upgrading costs, consider restaurants in

a food court inside a shopping mall, which typically provide mediocre food. A restaurant finds it

unprofitable to improve quality by installing new equipment or hiring a new chef, since such im-

provements are inexpensive and easily replicated by competitors, yielding no gain in market share.

For an example of under-investment with high upgrading costs, consider the recent iterations of

iPhones and Galaxy phones. Meaningful quality improvements that could expand market share

require major technological innovation, which is prohibitively costly in the mature smartphone

market.

I also identify a new mechanism, the dominant-state-enhancing effect, through which horizontal

differentiation influences quality competition in oligopoly. Quality competition generates similar or

differentiated quality levels between firms. The equilibrium quality investment behaviors, in turn,

generate a steady-state time distribution over quality levels. Increasing horizontal differentiation

dynamically modifies these behaviors, reinforcing the quality level that already dominates in the

time distribution before the change. This effect induces a dynamic substitution or complementarity

between horizontal and vertical differentiation, anchored by the cost of quality investment.

While the analysis primarily assumes that quality shocks are independent across firms, the model

can also accommodate correlated shocks. In an extension, the shocks are taken to be positively

correlated, and the two modes of competition still emerge, albeit in modified form. More specifically,

positively correlated shocks can reset the quality of both firms and offer the opportunity to restart

evenly. For upgrading deterrence, this restarting effect can end quality wars faster and make

deterrence less effective, which leads to firms choosing a higher upgrading frequency in the quality

war to compensate. For direct competition, the restarting effect lowers the competition incentive

by reducing the possibility of becoming a market leader, which reduces upgrading frequency.

Literatures. This paper studies quality investment dynamics in a duopoly competition setup.

A large theoretical literature studies dynamic quality investment, often in oligopoly competition

settings (Maskin and Tirole, 1987, 1988a,b; Rosenkranz, 1995), frequently incorporating additional

features such as firm entry or exit (Ericson and Pakes, 1995; Doraszelski and Markovich, 2007; Do-

raszelski and Satterthwaite, 2010; Abbring et al., 2018), learning by doing (Besanko et al., 2010), or

reputation concerns (Board and Meyer-ter Vehn, 2013). Empirical studies also document dynamic

competition with heterogeneous consumers and non-monotonic patterns of investment (Aghion

et al., 2005; Ryan, 2012; Gowrisankaran and Rysman, 2012; Eizenberg, 2014). Related to this pa-

per, Besanko et al. (2010) analyzes how firms reduce production costs through higher sales but suffer

from organizational forgetting, which together shape their competitive edge. Consumer heterogene-
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ity is modeled by an idiosyncratic preference shock with Type I extreme value distribution. By

contrast, the model in this paper generates non-monotonic dynamics without relying on additional

features such as scrap values, learning-by-doing, or reputation. Instead, the non-monotonicity is

generated by modeling horizontal differentiation with a familiar Hotelling setup.3

In terms of inefficiencies of quality investment, it is well known that competition can lead to

excessive investment, for example through excessive entry (Mankiw andWhinston, 1986), or that in-

vestment incentives are shaped by uncertainty, appropriability, and spillovers (Jones and Williams,

2000; Bloom et al., 2013; Ahuja and Novelli, 2017). Over- or under-investment is also documented

in empirical research regarding, for example, semiconductor chips (Goettler and Gordon, 2011) and

automobiles (Esteban and Shum, 2007). Compared with the existing literature, my model shows

that firms may under-invest in two disjoint quality-investment cost ranges for different reasons: the

deterrence from quality war at low cost levels, and the failure to internalize consumer surplus at

high cost levels.

The dynamic interaction between different dimensions of product differentiation is a topic less

studied in the extant literature. Shaked and Sutton (1982) and Motta (1993) examined how quality

differentiation is used to attenuate price competition, but the consumers are essentially homoge-

neous, and quality competition is just one shot. Some papers also employ Hotelling models with ad-

ditional features to represent the multiple dimensions of differentiation, such as product positioning

based on consumers’ recognition (Irmen and Thisse, 1998), or non-uniform consumer distributions

(Gabszewicz and Wauthy, 2012), but these models are largely static. Along this line, Vanhaecht

and Pauwels (2005) considered two competing universities facing both horizontal (location) and

vertical (education quality) competition in a one-shot game. To my best knowledge, this is the first

paper examining the dynamic interactions of multiple dimensions of product differentiation.

The remainder of the paper is structured as follows. Section 2 introduces the model. Section

3 analyzes the case without horizontal differentiation, where firms engage in dynamic Bertrand

competition in price and quality. Section 4 studies the full model with both horizontal and vertical

differentiation. In both cases, the outcomes under duopoly competition are compared with the

outcomes under a social planner to illustrate possible efficiency losses. While the main results are

presented under symmetric equilibria, Section 5 considers to what extent the results continue to

hold under asymmetric equilibria. Section 6 discusses extensions, and Section 7 concludes.

3Few papers have studied dynamic Hotelling competition problems, with one example being Lambertini (2012),

although that paper investigates the location decisions of the firms; that is, endogenizing the horizontal differentiation.
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2 The Model

Two firms engage in dynamic competition in a Hotelling market. Time is discrete and infinite,

and the period length is ∆. ∆ is used to model how fast firms can react to nature or each

other.4 The analysis primarily focuses on the scenarios where firms can react swiftly, and the

equilibrium behaviors are described at limit of the equilibria when ∆ → 0. This approach provides

an approximation of the equilibria, streamlines the expressions by removing the higher order terms

to offer clearer insights, yet still keeps the easier interpretations of a discrete-time model.5

We start by discussing the static competition environment, which is a standard Hotelling com-

petition environment. The two firms are located at the boundaries of the Hotelling market [0, 1],

thereby referred to as Firm 0 and Firm 1, respectively. Firms’ locations are exogenously fixed.

Each firm produces a product with quality that can be high (H) or low (L). Let vq be the value of

the product with quality q, and

vH = 1, and vL = α ∈ (0, 1).

The production costs are normalized to 0.

In each period, there are mass ∆ consumers uniformly distributed on [0, 1]. Each consumer can

choose to purchase from Firm 0, Firm 1, or not to purchase. If a consumer purchases, she pays a

transportation cost in addition to the price charged by the firm. The transportation cost is linear

in the distance between the consumer and the firm, measured by an exogenous coefficient k. If

the consumer does not purchase, she gets an outside option normalized to 0. Formally, suppose

the quality level and price of Firm i, i = 0, 1, are qi and pi, respectively. Consumers at location

ℓ ∈ [0, 1] make purchasing decisions to

max {q0 − p0 − kℓ, q1 − p1 − k(1− ℓ), 0} .

Unless stated otherwise, assume 0 < k ⩽ 1/3. The restriction on the size of k then guarantees that

firms engage in meaningful competition rather than act as separated monopolists when the quality

levels are not too low.6

The transportation cost coefficient k represents the level of horizontal differentiation. The

higher k is, the higher transportation cost a consumer has to pay to reach firms far away. As a

4In particular, ∆ does not affect consumer dynamics. As we will formally establish, consumers are transient and

will leave the market by the end of their arrival period. The total mass of consumers are also not affected by ∆.
5It may be perceived that we are studying here a continuous time model by taking the limit ∆ → 0. Still,

there are a few reasons to consider a discrete time model instead. First, it is more reasonable to believe that firms’

strategic decisions are discrete. Second, starting from a discrete model helps avoid some technical issues associated

with continuous-time models.
6The choice 1/3 also involves concerns of static game equilibria when the quality levels are lower. In Appendix A,

we will discuss how the size of k and α affect the static Hotelling game equilibria.
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result, consumers are more inclined to purchase from nearer firm (under comparable quality-price

combinations). This means the market is more horizontally differentiated in the sense that the

options provided by two firms are more differentiated from a consumer’s perspective.

The comparative statics of firms’ quality competition behaviors regarding k show the interaction

of horizontal and vertical differentiation.

The quality evolution is as follows. In each period, when the quality of a product is high,

the corresponding firm cannot further upgrade the product, yet nature can places a shock with

probability b = 1 − e−β∆ for some β > 0.7 When the quality is low, nature does not place shock,

and the firm can upgrade the product by paying a lump-cost c and restore the high quality. The

shocks are assumed to be independent between firms in the baseline model. Correlated shocks are

considered in an extension in section 6.

At (an arbitrary) period n, let (qn0 , q
n
1 ) be the state at the beginning of the period. If (qn0 , q

n
1 ) ̸=

(H,H), firms first make upgrade decisions, which modify the state to the intermediate (q̃n0 , q̃
n
1 ). If

(q̃n0 , q̃
n
1 ) ̸= (L,L), nature then decides whether or not to place shocks, and the state after nature’s

shock is (qn+1
0 , qn+1

1 ). This is the state faced by the consumers at period n, the state under which

firms make pricing decisions for period n, and the state at the beginning of period n + 1. This

stage game order also allows nature to cancel out the upgrading efforts from firms. The stage-game

timeline is pictured at Figure 1. The firms discount future payoffs using a common discount factor

δ = e−r∆.

tn tn+1 = tn +∆

(qn0 , q
n
1 ) (qn+1

0 , qn+1
1 )

Firms’ upgrade decisions

(q̃n0 , q̃
n
1 )

Firms’ pricing

Nature’s shock(s)

(qn+1
0 , qn+1

1 )

Consumers purchasing

Figure 1 Stage Game Timeline

The firms play Markov strategies with the quality pair (q0, q1) being the quality-relevant state.

In general, for a fixed period length ∆, Firm i’s strategy is a map:

{(qi, qj)} → [0, 1]× R+.

The first dimension is the upgrading probability. It is only meaningful when qi = L. Firm i can play

a mixed strategy by choosing an upgrading probability between 0 and 1. The second dimension is

the price.

7When ∆ → 0, the shock behaves as if a Poisson arrival process with parameter β.
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In general, the order in the stage game has strategic impacts on the game outcomes. For

instance, it matters whether nature can cancel out firms’ upgrading efforts. To see this, consider a

social planner who would like to maximize the consumer surplus when k = 0. If as opposed to the

order above nature moves first, the social planner should never have the incentive to duplicate the

high-quality product: The social planner can guarantee a high-quality product for the consumer

in each period, by simply keeping one high-quality product after nature’s shocks. Given there is

no transportation cost, this is sufficient to keep the consumer surplus at the highest possible level.

However, if the social planner moves first as stated above, the social planner could duplicate the

high-quality products, with the second high-quality product serving as the insurance for nature’s

shocks. Nevertheless, in the limit as ∆ → 0, the order of moves does not affect the equilibrium

outcomes. In particular, this is due to nature’s shock probability decreases in ∆ and converges

to 0 when ∆ → 0. In the social planner example, this means the probability that both products

receiving shocks is 0, so that the duplication is not profitable.8

Because firms can adjust prices each period after observing the realized state at no cost, pricing

is reduced to a static problem. The firms will play the static Nash-equilibrium pricing strategies,

which is briefly discussed in subsection 2.1. For this reason, I will focus mainly on the upgrading

strategies, denoted by σi : {(qi, qj)} → [0, 1]. For a given σj and nature’s shock probability b, σi

then determines the probabilities of state transition. Let

m(σi,σj ,b)

(
q′i, q

′
j | qi, qj

)
denote the probability of the state transitioning from (qi, qj) to (q′i, q

′
j). Let πi(qi, qj) be Firm i’s

stage payoff at state (qi, qj), and Firm i’s expected payoff Vi(qi, qj) at state (qi, qj) can be recursively

defined as

Vi(qi, qj) = πi(qi, qj)∆ + e−r∆
∑

(q′0,q
′
1)

m(σi,σj ,b)

(
q′i, q

′
j | qi, qj

)
Vi(q

′
i, q

′
j).

Both firms are expected-payoff maximizers.

The equilibrium concept I use is symmetric Markov perfect equilibria (MPE). It may be a

concern regarding firms collusion behaviors, i.e., whether more generic equilibrium concepts, such

as subgame perfection, should be selected instead of MPE. While a general SPE can possibly

achieve highest joint profit, it is a long tradition in both theoretical and empirical research to focus

on MPE when considering industry dynamics (Maskin and Tirole, 1987, 1988a,b; Doraszelski and

Satterthwaite, 2010; Aguirregabiria et al., 2021). MPE are often favored for the following reasons.

First, it is conceptually easy by not relying on the full history of the game. This also suggests that it

is easier to compute and to apply in empirical research. Second, collusions are often considerd less

8In the online appendix (available soon), I considered an alternative stage-game timeline and showed that the

results of the paper remain robust under this alternative timeline.
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plausible in many industries. Collusions may be impossible for policy reasons (i.e., the prohibition

of cartels) or the industry structure (such as low entry barriers).

The following reasons support the focus on symmetry. First, given that the game environment

and the firms are perfectly symmetric, the symmetric equilibria are considered more reasonable

under Harsanyi Symmetry-Invariance Criterion9. In particular, this guarantees that the equilibria

do not persistently favor one firm over the other. Second, symmetric equilibria are also more robust

if there is a fixed flow cost to stay in the market. In asymmetric MPE, there is usually a “strong”

firm and a “weak” firm, and the weak firm cannot survive with a (possibly small) fixed cost. As an

example, one asymmetric MPE is a Chicken MPE, and the equilibrium outcome is that only one

firm keeps its product at high quality. In turn, the weak firm gets 0 payoff, and this MPE cannot

exist with any positive fixed costs. Finally, it is a also tradition in strategic investment literature

to consider symmetric equilibria (Pakes and McGuire, 2001; Besanko et al., 2010).10 If there are

multiple symmetric MPE, the MPE offers highest joint profit is considered for welfare implications.

2.1 The Stage Game

Before analyzing the dynamic competition, it is useful to briefly study the static stage game, which

will help illustrate the upgrading incentives in later discussions. The formal analysis of the stage

game, including the proofs of the result, is in Appendix A.

First consider the special case of k = 0, where the market is reduced to Bertrand. When the

quality levels of the products are the same, both firms charge price 0 in the Nash equilibrium, and

π0(H,H) = π0(L,L) = 0.

When the quality levels are differentiated, the firm producing the high quality product (quality

leader) has the competitive advantage. Consider (q0, q1) = (H,L) as an example. In the unique

Nash equilibrium, p0 = 1− α and p1 = 0, leading to

π0 = 1− α, π0 = 0.

In equilibrium consumers are indifferent between the two firms, and break the tie in favor of the

higher quality firm. In particular, notice that firms have to be the quality leader to gain positive

profit when k = 0.

Next, consider k > 0, and the market is Hotelling. Here, assume a relatively small k to maintain

sufficient competition, and a relatively small α so that shocks are meaningful.11 Formally,

9This criterion suggests that the solution concept of a symmetric game should also be symmetric. See Harsanyi

and Selten (1988) for details.
10In section 5, I discuss how the results under symmetric MPE can partially extend to asymmetric MPE.
11This is the range for the results of comparative statics in later sections. For results under more general parameter

settings, see Appendix A.
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Lemma 1. Suppose that 0 < k ⩽ 2/9 and 0 < α ⩽ 1− 3k. In the stage-game Nash equilibrium:

• If (q0, q1) = (H,H), p0 = p1 = k, and π0 = π1 = k/2.

• If (q0, q1) = (H,L), p0 = 1− α− k, p1 = 0, and π0 = 1− α− k, π1 = 0.

To see the intuition, first consider (q0, q1) = (H,H). Under a positive k, the firms now have

market power and can charge a positive price even at the balanced state (H,H). Suppose Firm 1

still charges 0 as in the equilibrium under k = 0. Even though Firm 1 charges price 0, a consumer

at location 0 can only get 1 − k from Firm 1. Firm 0 now has an incentive to charge a positive

price, say ε > 0, since Firm 0 now attracts consumers in [0, (k − ε)/2k] and gets a positive payoff.

As Firm 0 charges a higher price, Firm 1 also faces weaker competition and similarly has the

incentive to increase its price. In the equilibrium, the equilibrium price and stage payoff increase

in k. Intuitively, firms can earn higher profits when their market powers are higher.

If (q0, q1) = (H,L), given small k and α, the quality leader, Firm 0, charges aggressively and

occupy the entire market. This is the same as k = 0. As k increases, it is more difficult to occupy

the entire market. Firm 0 has to charge a lower price to compensate the higher transportation cost

of the consumers far away. In turn, the price and stage profit decrease as k increases.

3 Vertical Differentiation with Homogeneous Consumers

A simpler problem is to consider the firms’ upgrading strategies when the consumers are homo-

geneous. More specifically, this section considers a special case k = 0 and removes the horizontal

differentiation. This simplification allows clearer interpretations of firms’ incentives and provides

useful contrasts with the case with both vertical and horizontal differentiation, which is discussed

in the next section.

3.1 The Social Planner Benchmark

As a benchmark, a social planner who maximizes the total surplus, defined as

Consumer surplus + Producer surplus−Upgrading costs,

is analyzed first. The social planner is utilitarian: for a given state (q0, q1), the allocation of surplus

is irrelevant, so that the social planner should always let the consumers purchase from the firm that

offers higher trading surplus.12 One simple price strategy to implement this is to set p0 = p1 = 0,

which allows consumers to choose the product with higher quality. The stage social surplus is then

w(q0, q1) = max{vq0 , vq1}.
12The trading surplus for each consumer is always positive since α > 0 and k = 0. In turn, the social planner

covers the whole market in any optimal policy.
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The social planner’s optimal policy is as follows.13

Proposition 2. The social planner’s optimal policy is

• Upgrading one product at (L,L) and no other upgrade if c ⩽ (1− α)/(r + β).

• No upgrade if c > (1− α)/(r + β).

The proof is in Appendix B. The threshold has a clear interpretations if the social planner

upgrades one product at (L,L), the state will be maintained at state (H,L) (or (L,H)) in the

limit. The flow payoff is vH = 1. If the social planner does not upgrade at all, the state will be

(L,L) forever, and the flow payoff is vL = α. The threshold, (1−α)/(r+β), represents the increase

in the present value of social welfare from making the upgrade. If this increase exceeds the cost,

the social planner upgrades.

Notice that the social planner never upgrades both products and duplicates high-quality prod-

ucts in the limit. As mentioned in subsection 2.1, the flow social welfare does not benefit from

a second high-quality product: consumers never benefit from a second high-quality product since

there is no transportation cost, and the social planner can respond instantly to nature’s shock.

3.2 Duopoly Competition Equilibria

Now consider the duopoly competition. As with the social planner, firms will not upgrade when

the upgrading cost is too high. In fact, the threshold at which firms stop upgrading is the same as

that of the social planner. To see this, suppose Firm 1 never upgrades. Firm 0’s problem is then to

decide whether to upgrade at state (L,L). If Firm 0 chooses not to upgrade, the stage payoff is 0.

If Firm 0 upgrades, it becomes the pseudo-monopolist that occupies the whole market and enjoys

the stage profit 1− α. The gain from upgrading, in present value, is (1− α)/(r + β). If the cost is

higher, then even if the opponent chooses not to upgrade, Firm 0 should also refrain from upgrading

since the pseudo-monopolist profit is still not sufficient to cover the upgrading cost. If the cost is

lower, the present value of the gain from upgrading is now higher than upgrading cost given that

the opponent firm chooses not to upgrade, so that no upgrading cannot be an equilibrium. This

constitutes the range no-upgrading MPE.14

Lemma 3. If c > (1− α)/(r + β) ≡ c̄, both firms never upgrading is an MPE.

The proof is included in Appendix B, which formalizes the argument above.

Low Cost Levels. When costs are lower, firms have incentives to make at least some upgrades.

Nevertheless, there is no MPE in which both firms always upgrade whenever possible when c > 0.

13Unless stated otherwise, the optimal policy and all later results are stated in the limit where ∆ → 0.
14Note that the social planner’s threshold and the firms’ threshold coincide only at k = 0. More details are discussed

at subsection 3.3.
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Intuitively, if each firm upgrades whenever a shock occurs and the state remains (H,H), firms earn

no stage payoff due to Bertrand competition. Yet upgrades are costly, implying that firms would

have strictly negative expected payoffs. Therefore, when c < c̄, firms must employ “occasional” up-

grading strategies in any equilibrium. Specifically, for each firm, there are two upgrading decisions:

whether or not to upgrade when the opponent’s quality is H, and when the opponent’s quality is

L. The questions are: (i) in which state should a firm upgrade, and (ii) what should the upgrading

frequencies be? Without loss of generality, consider Firm 0:

• At state (L,H), if Firm 0 upgrades, the state becomes (H,H), and Firm 0 receives no

immediate profit from upgrading.

• At state (L,L), if Firm 0 upgrades, then as long as Firm 1 does not upgrade for sure, Firm 0

can reach (H,L), where it earns positive profit. Even if Firm 1 upgrades for sure, the state

becomes (H,H), the same outcome as upgrading at (L,H).

Thus, the immediate outcome after upgrading at (L,L) is weakly better than upgrading at (L,H).

It is therefore natural to conjecture that both firms should upgrade at (L,L) when c is sufficiently

low. This leads to the following MPE. For symmetric MPE in this and following sections, it is

sufficient to list Firm 0’s strategy.

Proposition 4. The following is an MPE if the upgrading cost

0 < c ⩽
β(1− α)

(2β + r)(r + β)
≡ c̃ :

• At (L,L), Firm 0 upgrades for sure.

• At (L,H), Firm 0 upgrades with rate

f(c) =
(1− α)β − (r + β)(r + 2β)c

(r + β)c
.

Moreover, f is strictly decreasing in c.

The proof is in Appendix B. To understand the upgrading incentives, consider how Firm 0

reaches state (H,L), the only state in which Firm 0 has positive stage profit under this MPE.

Given that Firm 1 always upgrades at state (L,L), if Firm 0 also upgrades at (L,L), the state

becomes (H,H), which yields no immediate profit. Instead, Firm 0 profits only if nature places a

shock on Firm 1’s product and changes the state to (H,L). Firm 1’s strategy at (H,L) therefore

matters, as it determines the expected duration that Firm 0 remains in its only profitable state

(H,L).

If Firm 1 upgrades at state (H,L) for sure, the state will transition to (H,H) immediately. As

∆ → 0, the expected duration spent at (H,L) converges to zero. For any positive upgrading cost

that remains constant as ∆ → 0, such an aggressive strategy does not provide sufficient incentive
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for Firm 0 to upgrade at (L,L). Hence, an equilibrium in which both firms upgrade at (L,L)

cannot be supported. Conversely, if Firm 1 never upgrades at (H,L), the only way Firm 0 exits

state (H,L) is via nature’s exogenous shock. The expected duration of (H,L) is then the longest

possible, which strictly incentivizes Firm 0 to upgrade at (L,L) for sufficiently low c. But this

also means Firm 0 always upgrade at state (L,H), which reduces the duration of state (L,H) to

zero. To see this, notice that Firm 0’s upgrading incentive at (L,H) is the same as at (L,L), since

upgrading in either state leads to (H,H) at the same cost c, and staying at (L,H) also yields zero

payoff. Thus, if Firm 0 has strict incentive to upgrade at (L,L), it must also have strict incentive

to upgrade at (L,H). Since state (L,H) is the only state where Firm 1 earns positive profits, Firm

0 always upgrading at (L,H) eliminates Firm 1’s incentive to upgrade at (L,L). By symmetry,

Firm 1 would then not find upgrading at (L,L) optimal. This again cannot support the candidate

equilibrium. Therefore, Firm 1 cannot adopt a pure strategy of never upgrading at (H,L).

(L,L) (H,H) (H,L) · · ·

(L,H) (L,H) · · ·

shock

shock

Figure 2 State evolution when the opponent upgrades at (L,L)

The only remaining possibility is that Firm 1 plays a mixed strategy at (H,L). The idea is to

control Firm 0’s upgrading incentive so that Firm 0 does not always upgrade at (L,H), which in

turn supports Firm 1’s upgrading at (L,L). In other words, Firm 0 must also mix at (L,H). This

suggests Firm 1 must choose its mixing probability at (H,L) exactly so that Firm 0 is indifferent

between upgrading and not upgrading at (L,L) and (L,H). The indifference condition yields the

function f(·) specified in Proposition 4. Given this indifference, Firm 0 upgrades for sure at (L,L)

and uses the same mixing strategy at (L,H). Symmetrically, Firm 1 then finds it optimal to

upgrade at (L,L) and mix at (H,L), which supports the candidate equilibrium.

One feature of this MPE is worth emphasizing: upgrading incentives are not generated by

the immediate payoff from upgrading. In fact, the state (H,H) provides no profit under Bertrand

competition. Instead, incentives are derived from expected future profits. In this sense, the vertical-

differentiation-only problem is relatively simple: upgrading incentives are determined solely by the

expected duration in the profitable state. For Firm 0, the expected positive durration at (H,L) in

the future alone provides the incentive for the upgrade at (L,L), and this incentive is fine-tuned

by Firm 1’s mixed strategy.

As c increases, upgrading at (L,L) becomes more costly. In turn, stronger incentives are

needed to induce upgrading. This requires a longer expected duration in the profitable state,
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which is achieved through a lower upgrading rate. Intuitively, a firm views the opponent’s mixed

upgrading strategy as an additional “shock” that ends its profitable state, on top of nature’s shock.

A lower mixing rate reduces this effective shock probability, extending the expected duration. At

the boundary c̃,

f(c̃) = 0,

so the opponent does not upgrade at the firm’s profitable state. The duration in the profitable

state is then determined solely by nature’s shock rate and is the longest possible.

Intermediate Cost Levels. Since c̃ < c̄, some upgrades are still possible. When c̃ < c < c̄,

the upgrading incentive must be stronger, yet firms cannot further lower the mixing rate to provide

larger incentives to induce upgrading since f(c̃) = 0 already. In turn, if firms still upgrade at (L,L),

there must be another channel to strengthen the upgrading incentive.

To achieve this, observe that state (H,H) is less ideal for each firm. Firms have no immediate

profit. Instead, a firm must wait for shocks from nature to land at the profitable state. But this

is uncertain: the next shock from nature may strike the firm’s own product, benefiting the rival,

and the firm still earns no profit after the shock. Even if the next shock hits the opponent, the

probability of an immediate shock is zero, so the firm must wait, and discounting reduces the

present value of the resulting profits. Due to the discount, this wait already depreciates the future

profits. If the firms can bypass state (H,H) and land at either (H,L) or (L,H), the upgrading

incentives can indeed be enlarged. This can be achieved by adopting mixed strategies at (L,L), as

shown in Figure 3.

(L,L)

(L,H)

(H,L)

(L,L)

(H,H)

(L,H)

(H,L)

(L,L)

(H,H)

(L,H)

(H,L)

(L,L)

(H,H)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3 Mixing at (L,L)

When firms mix at (L,L), the realized state can be (L,H), (H,L), (L,L) and (H,H). In the

first two cases, the firm who upgrades avoids the wait and uncertainty at (H,H) and arrives at the

preferred state immediately, which provides larger incentive for upgrading. In the case that the

mixing realization is (L,L), the firms will mix again (since they play a Markov strategy). Since

both play mixed strategies, the firms can still clash and both upgrade, leading to state (H,H).

One particular issue is how to interpret the mixed strategy at the limit when ∆ → 0. Tradi-

tionally, if one takes a complete continuous-time perspective, a mixed strategy is expressed by a
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cumulative distribution function (CDF), which under Markov strategies corresponds to a constant

hazard rate. This is exactly what happens in Proposition 4, when firms play mixed strategies at

(H,L) and (L,H). By contrast, that reduction to a constant rate does not apply here. Let ĝ(∆, c)

be the mixing probability before taking the limit, and let’s temporarily suppress the argument c

for the ease of notation. If the mixed strategy here also converges to a rate, this means there must

exist ĝ > 0 such that

lim
∆→0

ĝ(∆) = 0 and lim
∆→0

ĝ(∆)

∆
= ĝ.

However, such mixed strategy cannot be supported in an MPE. To illustrate the reason, consider

Firm 0’s upgrading incentives at (L,L), when Firm 1 mixes in the rate fashion. When ∆ is small,

the probability that Firm 1 upgrades at (L,L) is then small. Then instead of playing a rate mixing

as well, if Firm 0 upgrades at (L,L) for sure, Firm 0 can land at (H,L) with probability almost

1 (and exactly 1 in the limit). This means not only is (H,H) perfectly bypassed, but Firm 0 also

lands at its profitable state (H,L) for sure. Given the candidate profile in which Firm 1 does not

upgrade at (H,L), Firm 0 can enjoy the positive profit state for the longest possible duration in

expectation. This represents a profitable deviation from the rate-mixing strategy, which breaks the

candidate equilibrium. In other words, in a rate-mixing profile, firms have a first-mover advantage

and an incentive to front-load upgrading probability, so that such profile cannot be an MPE.

The mixed strategy that sustains an MPE satisfies

lim
∆→0

ĝ(∆) = g ∈ [0, 1].

In other words, the mixing probability converges to a positive number in the limit. This will keep

the possibility that two firms clash and get to state (H,H), or the possibility that the state lands at

the opponent’s favorite state. These possibilities balance out the first-mover advantage of upgrading

at (L,L), restoring indifference and sustaining mixing rather than certain upgrading. The MPE is

summarized in Proposition 5 below.

Proposition 5. The following is an MPE if the upgrading cost c̃ ⩽ c < c̄:

• At (L,L), Firm 0 upgrades with probability g(c), where,

g(c) =
r + 2β

r + β

(1− α)− (r + β)c

1− α
.

• At (L,H), Firm 0 does not upgrade.

Moreover, g is strictly decreasing in c.

The proof is in Appendix B. Some technical details regarding the probabilistic mixing at (L,L)

are in order. First, this should be considered as a limit of discrete-time MPE instead of a purely
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continuous-time MPE. In a continuous-time setup, it is difficult to define probabilistic mixing with-

out encountering a measurability issue15, unless one is willing to employ a non-standard strategy

space. Interpreted as a discrete-time limit, the result approximately describes the mixing behavior

when ∆ is sufficiently small but positive. Second, under probabilistic mixing, the outcome of the

game in the limit has the following two features:

• (L,L) is not on-path. The remaining three states are all on-path.

• g determines the relative duration of states on path.

To better understand these two features, consider Figure 3 again. For ∆ close to 0, for any positive

time duration at (L,L), the firms would need to mix ”almost infinitely many” times during any

positive time spent at (L,L) if neither upgrades. But as ∆ → 0, the law of large numbers implies

that some firm(s) must have upgraded. In the limit, this implies (L,L) cannot be sustained on

the equilibrium path. In each round, the probability mass on (L,L) is redistributed across the

remaining three states. Therefore, the outcome distribution of (H,H), (H,L) and (L,H) is then

g2

g2 + 2g(1− g)
,

g(1− g)

g2 + 2g(1− g)
, and

g(1− g)

g2 + 2g(1− g)
,

respectively.

From the perspective of this outcome distribution, the MPE profile in Proposition 5 provides

stronger incentives than the profile in Proposition 4 by replacing part of the probability mass

of landing at (H,H) with the probability mass of landing at (H,L)/(L,H). Taking Firm 0 for

example, replacing (H,H) with (L,H) does not hurt Firm 0 since neither state provides any profits,

and replacing (H,H) with (H,L) is strictly beneficial. As g decreases, the probability of landing

at (H,H) decreases, so that the incentives is increasing, which helps to counter the increasing

upgrading cost. Hence, decreasing g shifts probability mass from (H,H) to (H,L), lengthening the

expected tenure in the profitable state and offsetting higher costs.

The aforementioned three MPE in Lemma 3, Proposition 4 and Proposition 5 cover the cost

range, with the upgrading frequency gradually decreasing. At the boundaries of two MPE, the

upgrading profile transitions smoothly. That is, the two MPE at the corresponding boundary

coincide. The three MPE and the corresponding upgrading rates/probabilities are illustrated in

Figure 4, and it turns out these are the only symmetric MPE for postive upgrading cost.

Theorem 6. There is a unique symmetric MPE for any c > 0.

The proof is in Appendix B. Conceptually, since there are only four states, the proof enumerates

all possible profiles and checks, for each, the cost ranges under which it can be an MPE.

15In a simplified argument, imagine that each firm may potentially mix many rounds before one firm finally

upgrades. In particular, as long as no one upgrades, the mixing must be repeated indefinitely. As ∆ → 0, the law of

large numbers indicates that each firm should have an upgrading probability 1 instead of a positive number strictly

between 0 and 1.
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c

c̃ c̄

Upgrading rate at (L,H) Upgrading probability at (L,L)

Upgrade at (L,L)

Mixing at (L,H)

Mixing at (L,L)

No upgrade at (L,H)

No Upgrade at (L,L)

No Upgrade at (L,H)

Figure 4 MPE with Vertical Differentiation Only

The two types of MPE discussed above has a common feature: firms need to act simultaneously

when the state hit (L,L). It may be questioned regarding how realistic or robust this can be. After

all, firms can hardly move at the same time. If one firm slightly delays the upgrade, the state transi-

tions into a quality-leader-follower state, and the follower should not upgrade any longer. However,

as all other results, this result should be interpreted as the limit of a discrete-time MPE. and the

simultaneous upgrade means both firms choose to invest when they observe the opportunity of be-

coming a quality leader, and both obtain the quality advancement within a reasonably short time

period. Many real-world examples have this feature: PlayStation and Xbox, Covid vaccines from

Pfizer and Moderna, AI race among OpenAI, Google, and Meta, etc. Duplications of investment

are also observed in some other innovation papers, such as Akcigit and Liu (2016).

Additional Symmetric MPE. Apart from the MPE above, there are some other symmetric

MPE at c = 0, and other asymmetric MPE when c > 0. When c = 0, there are multiple MPE

possible. It is straightforward to verify that always upgrading is an MPE given the trivial upgrad-

ing cost. It turns out that the corresponding firm upgrades at (L,H) and (H,L) while no firm

upgrades at (L,L) is an MPE as well. Such MPE and related multiplicity are discussed later in

subsubsection 4.2.2. The game also has asymmetric MPE, which will be discussed in section 5.

3.3 Investment Efficiency

In this section, we consider firms’ investment efficiency. In particular, compared with the social

planner who maximizes the social surplus, do the firms upgrade too frequently, not frequently

enough, or just at the efficient level? Following from the MPE profiles, it is clear that when
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0 < c < c̄, firms’ competition outcome is a distribution over three states, (H,H), (H,L), and

(L,H). Moreover, (H,H) will happen with strictly positive duration. The social planner, however,

never duplicates high-quality products.16 When (H,H) is on-path (and (L,L) is not), firms over-

upgrade relative to the social planner.

Corollary 7. If 0 < c < c̄, firms over-upgrade and never under-upgrade.

As in the prior literature, the over-upgrading (or over-investment in general) is driven by the

competition of the firms. As upgrading cost increases, the competition is softened, and the upgrad-

ing frequency gradually decreases, reducing the extent of over-upgrading. When c reaches c̄, the

firms stop upgrading.

In addition, in this vertical-differentiation-only case (k = 0), the social planner and the firms

stop upgrading at the same bound c̄. This is specific to the vertical-differentiation only case. For

the social planner, let w(q0, q1) be the stage social welfare, and the highest cost that supports

upgrading is
w(H,L)− w(L,L)

r + β
.

For firms, let π0(q0, q1) be the stage profits of Firm 0, and the highest cost that supports upgrading

is
π0(H,L)− π0(L,L)

r + β
.

When k = 0, w(H,L)− w(L,L) = π0(H,L)− π0(L,L). Intuitively, the gain of the upgrade is the

value difference between high-quality and low-quality products. Under the social planner, this gain

becomes part of the consumer surplus. Under the duopoly competition, this gain becomes part of

the quality leader’s profit. When there is horizontal differentiation (k > 0), the boundaries where

all upgrade behaviors stop in general do not coincide. To see this, notice that the social planner

and the firms may not split the market at the same place. For example, at state (H,L), the quality

leader in general serves more consumers under duopoly competition compared with under the social

planner, which creates efficiency loss.

3.4 Firms’ Long-Run Average Joint Profits

The social planner can also be considered as a consumer-surplus maximizer. From this perspective,

it is also useful to consider firms’ welfare in terms of joint profits. While this can be measured

16The social planner’s policy may appear asymmetric, since the high-quality product is never duplicated. Never-

theless, this outcome can also be achieved by a symmetric policy: Each time nature places a shock and the state

reaches (L,L), the social planner can randomize with equal probability to upgrade Firm 0’s product or Firm 1’s

product. This is a symmetric policy that never duplicates high-quality products. In fact, this shows clearly that the

inefficiency is generated by the lack of coordination between firms in duopoly competition.
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using the value function directly, the value functions depend on the initial state. For example,

consider the MPE profile in Proposition 4, in which case both firms upgrade at the moment the

state hits (L,L). The value function of either firm at (L,L) contains an immediate upgrading cost

c compared with the value function at (H,H). The significant impact of the upgrading cost may

obscure the insights regarding joint profits. To avoid this issue, this section considers the firms’

long-run average profits. Specifically, the long-run average joint profit measures the expected joint

profit per unit of time in the far future, when the state distribution has converged and no longer

depends on the initial state. This can be called the “steady state”, characterized by the steady-

state distribution. At this unit of time, in either the MPE described in Proposition 4 or the MPE

described in Proposition 5, part of the time τB is spent at the balanced high state (H,H), while

the remaining time τI is spent at the imbalanced states (H,L) or (L,H)17. The shock rate and the

MPE determines the transition probability between states and the frequency at which the firms

pay the upgrading costs.

Another reason to consider joint profits in this way is to obtain τB and τI , which turns out to

be useful measurements for the results regarding the interactions of the two dimensions of product

differentiation, to be presented in the next section. τB measures the time spent in state (H,H)

when the firms’ products are not vertically differentiated, while τI = 1 − τB measures the time

duration of states that feature vertical differentiation. This makes τI (or τB) an indicator that

reflects the extent of vertical differentiation.

As an example, we calculate τ ’s and the joint profit in MPE profile in Proposition 4. It is useful

to temporarily distinguish the time spent at (H,L) and (L,H), denoted by τHL and τLH , for a

clearer illustration. For state (H,L), under the MPE considered, it emerges when nature places the

corresponding shock at (H,H) (with rate β). State (H,L) exits either when Firm 1 upgrades the

product (with rate f(c)) or when nature places another shock (with rate β). In the steady state,

the inflow and the outflow balance, implying that

βτB = [f(c) + β] τHL.

The expression of τLH is similar. Given that τB + τI = 1 and τI = τHL + τLH ,

τB =
f(c) + β

f(c) + 3β
and τI =

2β

f(c) + 3β
.

This gives the distribution of time spent at each state in the long-run steady state. In terms of

upgrading frequency, notice that at state (H,H), there are no upgrades. At (H,L) and (L,H),

either the corresponding firm upgrade according to f(c), or both firm upgrades when nature places

a shock that the state hits (L,L). The upgrading frequency, or in other words, the frequency at

17For joint profits, the two states provide the same joint profit and are considered as just one state.
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which the firms pay the cost is

τHL [f(c) + 2β] + τLH [f(c) + 2β] =
2β [f(c) + 2β]

f(c) + 3β
.

The firms’ long-run average joint profit is then

[π0(H,H) + π1(H,H)]
f(c) + β

f(c) + 3β︸ ︷︷ ︸
τB

+ [π0(H,L) + π1(H,L)]
2β

f(c) + 3β︸ ︷︷ ︸
τI

−2β [f(c) + 2β]

f(c) + 3β
c. (1)

We can also calculate the distribution and the joint profits under the MPE in Proposition 5. The

results are summarized as follows.

Proposition 8. For 0 < c < c̄, firms’ long-run average joint profit is increasing in c.

The proof is in Appendix B. To see the intuition, recall that as c increases, the mixing

rate/probability decreases so as to provide sufficient upgrading incentives. As the upgrading be-

comes less frequent, firms incur upgrading costs less often, and τI increases, allowing them to enjoy

positive profits for longer durations. Both factors contribute to higher joint payoffs. However,

observe that the joint profits will be 0 once c > c̄ since both firms in the long run stay at (L,L),

and the profits are exhausted by Bertrand competition. Figure 5 shows the time distribution and

joint profits as a function of c.
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Figure 5 Time Distribution and Joint Profits

Note: Left: τB as a function of c. Right: Joint profit as a function of c. Calculated at r = 1, β = 1, α = 0.5.

Remark 1. Although the two MPE in Proposition 4 and Proposition 5 are technically different,

they can be considered as a unified equilibrium structure. First, the core underlying mechanisms

of the two MPE are similar: firms compete to be the quality leader of the market, the only way

to earn positive profits. In the first MPE in Proposition 4, firms upgrade the products in order to

keep the opportunities of achieving quality leadership in the future, which already provides sufficient

upgrading incentives. As the upgrading cost become higher, the second MPE in Proposition 5 also
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grants possibilities that firms can obtain the quality leader position immediately after upgrading.

Second, from the outcome of competition, it is also observed that the upgrading frequency is mono-

tone decreasing as upgrading cost increases. For these reasons, I will hereafter use the term direct

competition to refer to these two MPE.

4 Interactions of Vertical and Horizontal Differentiation

This section studies the general model that features both vertical and horizontal differentiation.

As a benchmark, the social planner’s optimal policy is first analyzed.

4.1 The Social Planner Benchmark

Unlike the case with vertical differentiation only, the social planner now has an incentive to duplicate

high-quality products when there is horizontal differentiation, i.e., k > 0. Consider the upgrade

decision at state (q0, q1) = (H,L). Consumers near Firm 1 either settle for the low-quality product

or incur a high transportation cost to purchase the high-quality product from Firm 0. If the social

planner upgrades to (H,H), these consumers can enjoy the high-quality product without high

transportation costs. Thus, the social planner prefers to keep both products at high quality, at

least when upgrading costs are sufficiently low.

Proposition 9. Define

cspH =



k(2− k)− 2α2

2k(β + r)
if α <

k

2
,

4− 4α− k

4(β + r)
, if

k

2
⩽ α < 1− k,

(1− α)2 + 2k(1− α)

4k(β + r)
if 1− k ⩽ α.

and

cspL =


k

4(β + r)
, if α < 1− k,

−(1− α)2 + 2k(1− α)

4k(β + r)
if 1− k ⩽ α.

The social planner’s optimal policy is:

• Never upgrade if c ⩾ cspH ;

• Upgrade one product at (α, α) and do not upgrade elsewhere if cspL ⩽ c < cspH ;

• Always upgrade if 0 ⩽ c < cspL .

The proof is in Appendix C. Proposition 9 shows that the social planner’s optimal policy is

defined by three cost regions, low, middle, and high, separated by two boundaries cspL and cspH . At
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the low cost range, the social planner keeps both products at high quality. At the middle cost

range, although there are benefits duplicating high-quality products, the higher costs prevent the

social planner from doing so, and the social planner can only afford to keep one product at high

quality. At the high cost range, product upgrading becomes too expensive, and the social planner

stops upgrading at all. The optimal policy is shown in Figure 6.

c

cspL cspH
Keep (H,H) Keep (H,L) Keep (L,L)

Figure 6 The Social Planner’s Optimal Policy

It is also easy to verify that the optimal policy is continuous at k = 0. That is,

cspH =
1− α

β + r
and cspL = 0 when k = 0.

When k = 0, the policy in Proposition 9 collapses to the policy in Figure 5.

Notice that there are policies that are never optimal, as shown in Proposition 9. In general,

the planner has six pure policy options:18 at (L,L), upgrade none, one, or both products; and at

(H,L)/(L,H), upgrade the low-quality product. The policies not utilized by the social planner in

the optimal policy are internally inconsistent. There are three such policies: (i) upgrading both

products at (L,L) but not at (H,L), (ii) upgrading one product at (L,L) and also at (H,L), and

(iii) upgrading at (H,L) but not at (L,L). For policy (i), upgrading both products at (L,L) implies

that the marginal benefit of a second high-quality product exceeds the upgrading cost, which implies

the choice not to upgrade at (H,L) is not optimal. Similarly, for policy (ii), upgrading only one

product at (L,L) suggests that the marginal benefit of a second high-quality product is below cost,

while upgrading at (H,L) suggests the opposite. For policy (iii), suppose the gain in social welfare

from upgrading (L,L) to (H,H) is 2δ. Consider a two-step upgrade in which the social planner

first upgrade Firm 0’s product and change the state to (H,L) before upgrading Firm 1’s product.

If consumers in [0, 1/2] always purchase from Firm 0 and the rest consumers from Firm 1, the gain

from each step must be δ. But consumer demand will re-distribute in the stage-game equilibrium:

upgrading Firm 0’s product first draws some consumers from Firm 1, so the gain from (L,L) to

(H,L) is strictly larger than δ, and the gain from (H,L) to (H,H) is strictly less than δ.19 Thus,

if the planner is willing to upgrade from (H,L) to (H,H), she must also be willing to upgrade

from (L,L) to (H,H). After ruling out these three policies, what left are the three policies in

Proposition 9.

18Since this is the social planner’s decision problem, it suffices to consider pure policy options. As before, any

seemingly asymmetric policy has an outcome-equivalent symmetric version via randomization.
19In the extreme case, when k is not too large, all consumers purchase from Firm 0. When the two firms split the

market, the indifference consumer is still in (1/2, 1).
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4.2 Duopoly Competition Equilibria

I now consider the quality evolution under firms’ duopoly competition when there is horizontal

product differentiation. It can be verified that the no-upgrading MPE in Lemma 3 and the two

direct competition MPE in Proposition 4 and Proposition 5 continue to exist as k increases, although

there are changes under positive k. First, the boundaries of the range of upgrading cost c that

allow for direct competition MPE change in k. In particular, the lower bound that allows for direct

competition MPE is some c3(k) > 0 for k > 0. Second, the mixing behaviors of the firms also

change in k. In particular, with a higher k, the quality competition between the firms can be

intensified or dampened.

The game also admits a second competition mode, upgrading deterrence, when there is hori-

zontal product differentiation, at even lower cost range c1(k) < c < c3(k). Under such MPE, the

firms realize that the opponents can frequently upgrade their products when lagging behind due

to the low upgrading costs, and choosing to upgrade their own products is to start a quality war.

Such quality wars are costly and act as a deterrence of product upgrade, so that firms can agree

on maintaining low quality levels together.

The two competition modes, along with the no-upgrading MPE when the cost is sufficiently

high and the always-upgrading MPE when the cost is sufficiently low, are summarized in Figure 7.

I now discuss the two competition modes in details.

c
c1 c2 c3 c̃ c̄

Always

Upgrade

Upgrading

Deterrence

Direct

Competition

Never

Upgrade

Figure 7 Duopoly Competition MPE with Horizontal Product Differentiation

4.2.1 Direct Competition: Interaction between the Two Dimensions of Product Dif-

ferentiation

Consider the direct competition region, c3 < c < c̄. As discussed in section 3, firms can be in

states (H,H), (H,L), or (L,H) in the steady state under equilibria, and the distribution of time

among different states, τB and τI , represents the levels of vertical differentiation. This section

considers the changes of mixing behaviors, and in turn, the changes in τI (or equivalently, τB), as k

increases. Such changes then reflect how vertical differentiation changes as horizontal differentiation

increases.20

20As shown later, the steady state under MPE other than direct competition ones are mostly (H,H) or (L,L)

only. The firms’ competition are in extreme: either fiercely compete with each other under low upgrading cost, or
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As a preparation, recall from section 2 that firms now can get positive stage payoffs in multiple

states instead of just the quality-leader state. In particular, both firms receive positive profits at

state (H,H), and the profits increase as k increases, while the stage-game profits of the quality

leader at (H,L)/(L,H) decreases in c when α is small. Still, firms still benefit more from being

the quality leader. That is,

π0(L,H) < π0(L,L) ⩽ π0(H,H) < π0(H,L).

To simplify the analysis, attention is restricted to the case where 0 < k ⩽ 2/9 and 0 < α ⩽ 1−3k.

The relatively small α makes the shock meaningful by creating a relatively significant divergence

between the value of a high-quality product and the value of a low-quality one, and it also satisfies

the monotonicity of the stage profits stated above. For larger α, firms under state (H,L)/(L,H)

still split the market, only not exactly at the middle. The competition behaviors of firms in states

(H,L)/(L,H) are similar to the behaviors in state (H,H), and shocks only have quantitative rather

than qualitative effects. Under smaller α, shocks from nature are more significant by pushing the

quality-follower outside the market and the firms have to cope with the shocks with behaviors that

are qualitatively different.

Under this parameter range, there exists ĉ such that

• The two dimensions of differentiation exhibit substitution relations in equilibria if c3 ⩽ c < ĉ.

• The two dimensions of differentiation exhibit complementary relations in equilibria if ĉ ⩽ c <

c̄.

Formally, the substitution and complementary relations are represented by how τI changes as k

changes. This is summarized below.

Theorem 10. Suppose that 0 < k ⩽ 2/9 and 0 < α ⩽ 1− 3k. There exists ĉ ∈ (c3, c̄) such that for

a given upgrading cost c,

∂τI
∂k

< 0 if c ∈ (c3, ĉ) and
∂τI
∂k

> 0 if c ∈ (ĉ, c̄).

And ∂τI/∂k = 0 only at c = ĉ.

The proof is in Appendix C. To interpret this result, note that k measures the degree of hor-

izontal differentiation. When k increases, the horizontal differentiation increases. As discussed in

the previous section, τI is the time spent at the imbalanced (H,L)/(L,H) states, where there is

vertical differentiation. Thus, a decrease in τI corresponds to a decrease in vertical differentiation.

avoid competition with each other under high upgrading cost. Intuitively, the interaction of product differentiation

exist when the upgrading cost is intermediate, which corresponds to the direct competition region when considering

symmetric MPE.

24



In turn, if τI decreases in k, this means the vertical differentiation is reduced when there is more

horizontal differentiation, hence the two dimensions of differentiation exhibit substitution relations.

To trace out the driving force of the substitution/complementary relations, consider how the

upgrading incentive changes as k increases, when firms upgrade from the quality-follower state.

Notice that with horizontal differentiation, firms get positive profits at states (H,H) and (H,L),21

so that both states provide upgrading incentives.

First, consider cost levels close to c3 and Firm 0. Since c is relatively low and the firms employ

high upgrading rates (For a more concrete observation, see Figure 5.), both firms often hold high

quality levels. In turn, τB is significantly larger than τI , and state (H,H) provides most of the

upgrading benefits. This is shown in Panel (a) of Figure 8, where total area of light gray rectangles

represents the benefits of upgrading. While the stage game profit of being the quality leader,

π0(H,L), is higher, τB is much larger, so that the area of the rectangle corresponding to τB is

larger. Now consider an increase in k, and suppose the time distribution does not change for now.

π0(H,H) increases in k, so that the upgrading benefits provided by state (H,H) is higher. This is

shown by draker gray rectangle in the figure. And π0(H,L) decreases in k, so that the area above the

white dash line is no longer upgrading benefits. Since τB > τI , the overall benefits from upgrading

is increasing in k. However, since the upgrading cost c is not affected by k, the upgrading benefits

are strictly larger than the upgrading cost, which breaks the indifference condition in the MPE. To

restore the indifference condition, the total upgrading benefits must be reduced. This means the

time τHL = τI/2 spent at more profitable state (H,L) must be reduced.22 This is shown in Panel

(a) of Figure 8. The solid arrows in the figure then give the direction of time redistribution in the

new equilibrium. Overall, an increase in k leads to a decrease in τI , which gives the substitution

relation of the two dimensions of product differentiation.

Next, consider cost levels close to c̄ and again Firm 0. Since c is relatively high and the firms

employ low upgrading probabilities, it is more likely that one firm emerges at a quality leader. In

turn, τI is significantly larger than τB, and state (H,L) provides most of the upgrading benefits.

This is shown in Panel (b) of Figure 8. As k increases, the stage-game profits change in the same

way as before, but the overall benefits from upgrading is decreasing in k since now τI > τB. This

means he upgrading benefits are strictly smaller than the upgrading cost, which also breaks the

indifference condition in the MPE. To restore the indifference condition, the firms must receive

larger upgrading benefits, whichmeans the time τHL = τI/2 spent at more profitable state (H,L)

must be larger. The solid arrows in the figure, now pointing to the opposite direction, give the

direction of time redistribution in the new equilibrium. Overall, an increase in k leads to a increase

in τI , which gives the complementary relation of the two dimensions of product differentiation.

21Under the parameter setting of Theorem 10, Firm 0 still gets flow payoff 0 at state (L,H).
22Note that the direction of the change of the incentives are determined by ∂πi(q0, q1)/∂k, while the overall size of
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πi

τB τI/2

(a) Smaller c

πi

τB τI/2

(b) Larger c

Figure 8 Interactions of Differentiation and Upgrading Incentives

Note: The width of each bar is the corresponding time distribution. The height of each bar represents the upgrading

incentive, or the benefits from upgrading. The total gray area represents the overall incentive of upgrading. The

dashed lines, borders, and arrows show how the stage payoffs change as k increases. For example, as k increases,

π0(H,H) increases, and it is represented by the darker area within the dashed boarder. The solid arrow shows how

the time distributions change as k increases.

More intuitively, when the upgrading cost is lower, firms compete more aggressively, and they

are more likely to stay in the comparable quality levels. If the market power increases, firms are

able to charge a higher price and earn a higher profit. This in turn fuels quality competition,

making it even harder to differentiate with each other. When the upgrading cost is higher, firms’

upgrading frequencies are lower, and a quality leader is more likely to emerge and dominates the

market. If the market power increases, the weaker firm has a stronger incentive to enter, and the

leader must give up more profits to maintain the market dominance. This in turn dampens the

competition in quality, reducing the upgrading frequencies, and a quality leader is even more likely

to emerge instead of both upgrading to the high-quality level.

4.2.2 Upgrading Deterrence

For c ⩽ c3 the equilibrium is qualitatively different from the equilibria characterized in section 3.

Before discussing upgrading deterrence MPE, it is customary to introduce the always-upgrading

MPE. As k increases, the firms gain market power even at balanced quality states. In particular,

when k is small as assumed, the firms profit at (H,H) increases in k. This means the balanced high-

quality state (H,H) can now also offer upgrading incentives for a quality follower. As upgrading

cost c drops below the threshold c3, the upgrading incentive from (H,H) can be already sufficient

incentives depend on πi(q0, q1).
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for the quality follower to invest in quality and catch up. This leads to the always-upgrading MPE.

Proposition 11. Always upgrading is an MPE if

0 ⩽ c ⩽
π0(H,H)− π0(L,H)

r + β
≡ c3.

The proof, which involves solving the value function and ruling out profitable deviations, is

relatively straightforward and hence omitted. Instead, notice that the condition in Proposition 11

is exactly the no-profitable-deviation condition at (L,H). The RHS is the present value of upgrading

gain, and if the upgrading cost is lower, firms prefer to upgrade at the quality-follower state.

Interestingly, there is not a second condition that corresponds to the no-profitable-deviation

condition at (L,L). The reason is easy to see at the limit, where ∆ → 0. Given that Firm 1 always

upgrades (at least at (L,L)), if Firm 0 follows the strategy and upgrades, they move to (H,H)

immediately. If Firm 0 does not upgrade at (L,L), they move to (L,H) instead. But then the

condition in Proposition 11 indicates that Firm 0 should upgrade at (L,H), leading to (H,H) as

well. Given ∆ → 0, the two paths have no payoff difference. For this reason, the no-profitable-

deviation condition at (L,L) is always satisfied. This is an example of self-fulfilling: both firms

believe that the opponent will upgrade at (L,L), which renders (L,L) not on-path, so that they

might as well upgrade at (L,L).

Such self-fulfilling features usually indicate equilibrium multiplicity. Indeed, there are additional

MPE that overlaps with the always-upgrading MPE. Define

c1 =
π0(H,H)− π0(L,L)

r + β
and c2 =

1

r + β

[
π0(H,H)− β

r + β
π0(L,L)−

r

r + β
π0(L,H)

]
,

and it is easy to see that 0 ⩽ c1 < c2 < c3.

Proposition 12. The following is an MPE if c1 ⩽ c < c2:

• Firm i does not upgrade at (L,L).

• Firm i upgrades for sure at (L,H).

The following is an MPE if c2 ⩽ c < c3:

• Firm i does not upgrade at (L,L).

• Firm i upgrades at (L,H) with a rate h(c), where

h(c) =
(β + r) [π0(H,H)(β + r) + βπ0(H,L)]

(β + r)2c− π0(H,H)(β + r) + π0(L,H)r + βπ0(L,L)

− (β + r) [π0(L,H)(β + r) + βπ0(L,L) + (β + r)(2β + r)c]

(β + r)2c− π0(H,H)(β + r) + π0(L,H)r + βπ0(L,L)
.

Moreover, h(c) is decreasing in c. Also, in the corresponding cost range, the MPE here yield higher

joint profits than the always-upgrading MPE.
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The proof is in Appendix C. Instead of utilizing the low costs and always upgrading, firms

play “upgrading deterrence” in these MPE. Consider the first MPE in Proposition 12. Both firms

“agree” to stay at the low quality level as long as no one upgrades. However, once a firm upgrades,

they play a quality war forever by always upgrading since (L,L) is reached with 0 probability. To

support this MPE, the upgrading cost cannot be too low. In particular, c ⩾ c1, so that quality

war is a meaningful deterrence. When c < c1, the upgrading incentive provided by moving from

(L,L) to (H,H) is already large enough compared with the upgrading cost, and no deterrence can

sustain (L,L). The upgrading cost also cannot be too high, since fighting an indefinite quality war

following upgrading at (L,L) is also costly, and the deterrence is not credible when the cost is too

high. c = c2 is the highest cost where the forever quality war can be sustained.

As the upgrading cost further increases, the forever quality war becomes too costly, and the firms

switch to weaker deterrence using mixed upgrading strategies. Unlike the MPE above in which the

quality state is maintained at (H,H) once a quality war starts, the steady state under this MPE

is (L,L): in a quality-war phase such as (H,L), given enough time, nature will eventually place a

shock before Firm 1 upgrades, restoring the absorbing state (L,L). For this reason, the quality war

for c2 < c < c3 is a finite-length quality war (in expectation), which is weaker deterrence. Still, this

weaker deterrence is already sufficient for the equilibrium: for a firm who is tempted to upgrade, it

faces a higher upgrading cost that can be deterred by a finite-length quality war. For a firm who is

supposed to fight the quality war after the opponent’s upgrade, a finite-length quality war is also

more affordable compared with the infinite-length quality war under the higher upgrading cost. At

c = c3, even the mixed-strategy punishment becomes too costly to sustain.

We call the MPE in Proposition 12 upgrading deterrence. Just as the two MPE in the

direct competition case, although they are technically two different MPE, the driving forces are

similar. These two equilibria are also similar to the trigger punishment in repeated games. For

example, when c1 < c < c2, the MPE is similar to grim trigger: a deviation leads to quality

war forever. However, it should be clarified that such equilibria are still MPE, and the strategic

incentives in these MPE are not the same as the incentives in repeated games. In repeated games, a

punishment is based on the sunk behaviors that are not payoff-relevant. For example, in a repeated

prisoners’ dilemma, players engage in punishment if a player deviates to defect in any history. But

the deviation itself does not change the payoffs of the current and future games. The players still

face the same stage game with the same payoff matrix. The punishment is sequential rational for

both firms as they consider the history. This is not the case here. By deviating to upgrading at

(L,L), the deviating firm changes the payoff relevant state for both firms, namely, its quality. The

incentives of the firms thereafter are still based on payoff-relevant states only. In other words, firms

play quality wars not to punish deviations. Instead, they play quality wars because it is the best

option since they are already there, even if they both believe for sure that no one would upgrade
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if they could go back to (L,L) now. For this reason, the seemingly-trigger strategy can be better

named as “competition trigger”.

Such equilibria can also exist under k = 0, but only trivially, as they require c = 0 to be

sustained. To see this, consider the first upgrading-deterrence (forever quality war) profile. There

is no profitable deviation at (L,H) or (H,L) since the game is played exactly the same as always

upgrading. At (L,L), no upgrade leads to (L,L) forever, in which case both firms yield payoff 0.

If Firm 0 deviate and upgrades, the state is (H,H) forever, and the payoff is still 0. Given the

upgrade is free, Firm 0 is exactly indifferent between upgrading or not and might as well choose

not to upgrade.23 This is rather delicate and cannot be maintained for c > 0. It is the existence

of market power that allows deterrence-type equilibria to exist under non-trivial parameter values:

the upgrading incentives from (L,L) to (H,H) are smaller than the upgrading incentives from

(L,H) to (H,H), which creates a non-trivial range of c to support forever or finite-length quality

war MPE.

The equilibrium regions are illustrated in Figure 9.24

c
c̃ c̄c1 c2 c30

Always

Upgrading

Upgrading

Deterrence

Direct

Competition

Never

Upgrade

(L,L)

(H,L)/(L,H)

Upgrade

Mix

Mix

No

No

No

Upgrade

Upgrade

Upgrade

No

Mix

No

Figure 9 The Summary of Joint-Profit-Maximizing Symmetric MPE

Note: Above axis: Competition modes. Both the upgrading-deterrence mode and the open-competition mode contains

two types of MPE. Below axis: upgrading strategies of firms when at low quality.

It can be of interest regarding how the bounds above changes as parameters r, β or k change.

Regarding r and β on bounds c1, c3 and c̄, the effect is straightforward: as r or β increases, all three

bounds decreases. A larger discount or a higher shock rate means the upgrading today is relatively

more expensive. When the firms discount the future more, the flow profits from future are lower

compared with the current cost of upgrading. When the shock rate is higher, the expected duration

of the product maintaining high quality after an upgrade is shorter, leading to again lower profits

23Under k = 0 and c = 0, the finite-length quality war MPE converges to the forever quality war MPE.
24There is another symmetric MPE, under which both firms engage in probabilistic mixing at (L,L) while upgrade

for sure at (H,L)/(L,H). Although this is a technically different MPE, it is outcome equivalent to always upgrading

in the limit. We leave the details to Appendix C, where we also compare the joint profits for the MPE in Figure 9

in case of multiplicity.
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per upgrade. In turn, upgrading regions shrink, and no-upgrading region expands.

For k, under the condition in Theorem 10, both c1 and c3 increases in k, while c̄ decreases in

k. To see why this is the case, first consider c slightly above c1, where the firms in the upgrading-

deterrence equilibria are tempted to deviate to (H,H). As k increases, the flow payoff at (H,H)

is higher, so that upgrading deterrence is harder to be maintained, leading to the increase in c1.

For c slightly below c3, the increased flow payoff at (H,H) means that firms can afford more costly

quality war, leading to the increase in c3. However, at c below c̄ where firms have low upgrading

frequency and mostly sustain the leader-follower states, the flow payoff at (H,L) (or (L,H)) is

now lower, offering lower upgrading incentives, so that firms stop upgrading even sooner, leading

to lower c̄.

4.3 Investment Efficiency

As in the case of k = 0, the firms in general do not invest in quality in an efficient fashion.

Additionally, the firms can now under-invest, which is not present when k = 0. As before, we

consider the long-run state distributions.

It should also be clear that the finite-length punishment will have (L,L) as the steady state.

This should be straightforward if the initial state is (L,L). When the initial state is not (L,L),

given long enough time, nature eventually will place a shock sooner than a firm upgrading its

product, and the state transitions to (L,L), which is absorbing.

Corollary 13. Assume that 0 < k ⩽ 2/9 and 0 < α ⩽ 1−3k. The firms over-upgrade if c3 < c < c̄.

There also exist costs cℓ < c3 and cu > c̄ such that firms under-upgrade in (cℓ, c3) and (c̄, cu).

The proof is in Appendix C, which shows that cspL < c3 and c̄ < cspH . The intuition of the over-

upgrading region is the same: the competition between the firms enforces too many investments.

Note that the two disjoint under-upgrading region implies that the efficiency itself is not monotone:

under-upgrading can happen at lower and higher cost levels, though driven by different forces. At

the cost level just below c3, firms under-upgrade due to the de facto collusion achieved by the

upgrading deterrence. Firms do not upgrade as frequently as the social planner because the quality

war is too costly. In a way, under-upgrading is possible only because the potential competition is

too severe. At the high cost level above c̄, firms do not upgrade and there is no dynamic quality

competition. Firms stop upgrading sooner than the social planner because they do not internalize

the consumer surplus. While the social planner finds it still worth upgrading considering the

social surplus, the joint profits are not sufficient to cover the upgrading cost to maintain quality

competition.

Notice that the existence of both under-upgrading regions requires horizontal differentiation. In

the low-cost region where under-upgrading is generated by upgrading deterrence, deterrence relies
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on the fact that the flow gain from (L,H) to (H,H) strictly exceeds that from (L,L) to (H,H),

which does not hold if there is no horizontal differentiation. In the high-cost region where under-

upgrading is generated by failure of internalizing consumer surplus, firms’ competition reallocates

consumers in an inefficient way only when there is horizontal differentiation.

4.4 Firms’ Long-Run Average Joint Profits

While the firms’ long-run average joint profits are increasing in c when k = 0 (until c is too large),

the joint profits under k > 0 can be non-monotonic in two regions. First, when c is sufficiently

small and the MPE is firms always upgrading, the joint profit is decreasing in c. Second, when c is

close to c̄ and c < c̄, the joint profit is decreasing in c if β is large.

To understand the reasons, note that increasing c in general has two effects. The direct effect

is the cost effect; that is, firms must pay higher costs to upgrade the products, which decreases the

joint profits. There is also an indirect effect: Higher costs dampen the competition between the

firms, a firm is more likely to become quality leader and enjoy higher profits, and the firms also

pay the upgrading cost less frequently. This increases the joint profits.

When c is small and firms always upgrade, only the direct effect is present. As c is sufficiently

low, firms always upgrade, and the upgrade frequency is determined by the shock frequency alone.

Slightly increasing c does not dampen the competition (for any interior c). In the case of direct

competition, the indirect effect usually dominates, which is indeed the case when k = 0. When

k > 0, the indirect effect may be weakened when c is close to c̄, where the two dimensions of

differentiation are complementary. As k increases, τB decreases, and firms stay at imbalanced

quality states for a longer period. In such states, whenever a shock happens, at least one firm needs

to upgrade. If shocks occur frequently enough, the direct effect of cost dominates the indirect effect

of competition dampening, leading to decreasing joint profits.

5 Asymmetric Equilibria

In this section I characterize the set of all MPE and investigate which results extend to every MPE

of the model. It will be shown that in asymmetric MPE, (i) there still exists non-monotonicity of

upgrading frequencies in the upgrading cost c, (ii) all but one asymmetric MPE still induce ineffi-

ciencies, and (iii) there are still interactions between the two dimensions of product differentiation

in asymmetric MPE.

There are three types of asymmetric MPE in this game:

• Case A. In the upgrading-deterrence region, there exist the following MPE:

– One firm mixes at (L,L) with a rate and upgrades at the quality-follower state for sure.
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– The other firm does not upgrade at (L,L) and upgrades at the quality-follower state

with a rate.

• Case B. In the first direct-competition region (c3 ⩽ c < c̃), there exist the following MPE:

– One firm upgrades at (L,L) for sure and mixes at the quality-follower state with a rate.

– The other firm mixes at (L,L) with a probability and mixes at the quality-follower state

with a rate.

• Case C. In the second direct-competition region (c̃ < c < c̄), there exist the following MPE:

– One firm upgrades at (L,L) for sure.

– No other upgrade.

The formal statements of the asymmetric MPE above are delegated to Appendix D. Here, I briefly

discuss the upgrading incentives of the firms in the asymmetric equilibria. In Case A, the upgrading

deterrence feature is mainly preserved, especially for the less-active firm who chooses not to upgrade

at state (L,L). This MPE reflects the competition scenario where one firm is more inclined to start

a quality competition, but this inclination is partially inhibited by potentially fierce quality war.

In turn, (L,L) is a state remain on path in the steady state. In Case B, one firm chooses the same

strategy as in the symmetric MPE, so that the opponent is indifferent at (L,L). In the symmetric

MPE, the opponent has the equally-strong upgrading inclination and chooses the same upgrading

strategy. Here, the opponent has a weaker upgrading inclination and chooses a lower upgrading

frequency at (L,L). In Case C, the competition is the classic game of Chicken.25

Naturally, the specific upgrading frequencies, inefficiencies, and the modes of interactions of the

two dimensions of product differentiation are different under asymmetric equilibria. However, as

argued below, the results under symmetric equilibria can be qualitatively extended to asymmetric

ones.

Non-monotonicity of the upgrading frequency. It should be easy to see that this is still

not monotonic even if we consider the asymmetric equilibria. In Case A, as discussed above, (L,L)

is on path in the steady state. But in Case B, (L,L) is no-longer on path, since at least one firm will

upgrade at the moment the state hits (L,L). In other words, while the upgrading frequencies are

relatively low for c < c3 to maintain the lowest quality state (L,L) on path, the firms’ upgrading

frequencies are higher to remove (L,L) from the steady state when c > c3.

Inefficiencies. In Case A, for c not too low, the social planner’s optimal policy is to keep

the quality state at (H,L). Case A instead generate a steady state where four possible quality

states are all present. In particular, both (L,L) and (H,H) are possible. In Case B, notice that

(H,H) is on path just as the symmetric equilibria, while (L,L) is not on path. This suggests

firms’ upgrading behaviors are not dynamically efficient, since the social planner would like to keep

25This is the MPE that will be eliminated if there is a (small) flow cost of staying in the market, especially under

small k and α, as assumed in Theorem 10.
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one and only one product at high quality. The Chicken MPE in Case C is the only asymmetric

MPE that is dynamically efficient. To compare this with Corollary 13, notice that in Corollary 13,

there is exactly one cost c̄ at which the firms are efficient, i.e., where the firms transitions from

over-upgrading to under-upgrading.26 If we consider Case C, the transition range of c is enlarged

from a point, c̄, to an interval, (c̃, c̄].

This shows for all but the Chicken MPE, asymmetric MPE cannot avoid dynamic inefficiencies.

Moreover, the sources of the inefficiencies are often similar to the symmetric MPE. In Case A, there

still exists under-upgrading due to the partial deterrence feature. In Case B, the over-investment

is again derived from firms’ competition incentives, exactly the same as the symmetric MPE.

Interactions of two dimensions of product differentiation. The discussion needs to be

limited to c1 < c < c̃ (i.e., Case A and Case B) for the following reasons:

• There are possible interactions now in the originally upgrading-deterrence region c1 < c < c3,

i.e., Case A, since the outcome distribution is not trivially (L,L) only. However, since (L,L)

is still on path, there are two states in which firms have no vertical differentiation, τB now

include the time spent at (H,H) and (L,L).

• In the second direct-competition region c̃ < c < c̄, i.e., Case C, there is no longer interaction

due to the asymmetric Chicken MPE, in which case the outcome is now always a quality-

leader-follower state, suggesting τB = 0.

Due to complexity of the calculations under asymmetric equilibria, simplifications of the range

of the parameters are adopted. For example, under small k, it can be shown that ∂τB/∂k > 0

when c < c3 (under Case A), while for c close to c3 and c > c3, ∂τB/∂k < 0, so that the two

dimensions of product differentiation can still exist first substitution then complementary relations.

See Appendix D for details.

It should be noted that the interactions between the two dimensions of product differentiation

are less clear and more parameter-dependent in general. The sign of the derivative ∂τB/∂k will

depend k, r, β, and α, and the first substitution then complementary relations can be violated.

However, the economic intuition of the interactions is still the same: as k increases, the firms

experience strengthened or a weakened upgrading incentives triggered by the changes of stage

payoffs, and the time distribution τB in the steady state under the corresponding MPE must

adapt to restore the correct upgrading incentives. This in turn increases or decreases the product

differentiation in the equilibria, giving the substitution or complementary relations between the

two dimensions of product differentiation.

26Under the symmetric direct competition equilibria, as c → c̄, the firms’ mixing probability at (L,L) decreases

and converges to 0. This means as c close to c̄, both firm upgrading almost never happens, and almost always one

firm will emerge as the quality leader of the market. In the limit, c̄, this gives the dynamic efficiency.
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6 Extensions

This section considers an extension where the shocks are no longer independent. Instead, if nature

places a shock on one firm, it is more likely to place a shock on the other firm as well. This can

be reasonable in the real world: if the fryer breaks at one restaurant, removing fries from the

restaurant’s menu, the consumers may order more fries from competitors, which can overload and

possibly break the fryers of competitors. The introduction of new technology can also render all

current products in an industry obsolete. For example, film cameras were rapidly displaced by

portable digital cameras in the early 21st century, which in turn have been largely superseded by

smartphones in more recent years.

More geneally, a symmetric correlation between two shocks as shown in Table 1 is assumed.

Specifically, in each period, the shocks keep the same marginal distribution, i.e., a shock happens

with probability b, but now the shocks are correlated with correlation coefficient ρ ∈ [0, 1]. Note

that this correlation is only in effect at state (H,H). At (H,L) or (L,H), only one product can be

shocked, and the shock probability is still the marginal probability b.

Table 1 The Distribution of Correlated Shocks

Shock to Firm 1 No Shock to Firm 1

Shock to Firm 0 b2 + ρb(1− b) b(1− b)(1− ρ)

No Shock to Firm 0 b(1− b)(1− ρ) (1− b)2 + ρb(1− b)

Also, the main concern of this section is to verify if the two major competition modes, upgrading

deterrence and direct competition, still hold under correlated shocks, and if so, how they changes

due to the correlation.27

As the results above mainly study the limiting behavior of the equilibria, it is worth mentioning

that ρ is assumed to be a constant as ∆ → 0.28 If ρ → 0, our previous results prevail.

I start with the two upgrading-deterrence equilibria.

Proposition 14. The two upgrading-deterrence MPE still exist for ρ ∈ (0, 1). Also,

• c1, c3 do not change with ρ.

• c2 increases in ρ and coincides with c3 when ρ = 1.

• h(·) increases in ρ.

The proof is in Appendix E. For an intuition, notice that correlated shocks make upgrading

deterrence more difficult. For the upgrading deterrence MPE with finite expected length (c2 <

27It is also straightforward to verify that the always-upgrading MPE and the never-upgrading MPE still exist under

the same range, and c1 and c̄ do not change with ρ.
28More generally, it at least needs to be assumed that ρ has a positive limit.
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c < c3), if the shocks are not correlated, (H,H) can only fall to (H,L) or (L,H) as ∆ → 0.

The corresponding firms upgrade at such states with a rate and potentially extend the quality-war

phase. With correlated shocks, (H,H) can fall to (L,L) directly with positive probability. In other

words, the correlation has a restarting effect : it resets the quality levels to a balanced low-low

state, restarting the competition of the firms. Once the state reaches (L,L), the quality-war phase

terminates immediately for sure. Therefore, the correlation between shocks effectively reduces the

expected length of quality-war. In order to keep sufficient deterrence, firms then must upgrade with

a higher rate at (L,H) or (H,L). This reduces the payoff of the opponent by not only reducing

the expected duration spent at their preferred state, but also lowering the probability that a shock

arrives sooner than the upgrading at (L,H) or (H,L), which extends the expected duration of the

quality-war phase. In turn, as ρ increases, both c2 and h(·) increase continuously in ρ, and at ρ = 1,

only the competition-trigger MPE survives.29

We next move to the direct-competition equilibria.

Proposition 15. The two direct-competition MPE still exist for ρ ∈ (0, 1). Also,

• c3, c̄ do not change with ρ.

• c̃ decreases in ρ and coincides with c3 when ρ = 1.

• f(·) and g(·) decrease in ρ.

The proof is in Appendix E. To understand this result, recall that the mixing rates or probabili-

ties need to provide correct upgrading incentives in direct-competition MPE. As the shocks become

more correlated, the expected durations at imbalanced (H,L) and (L,H) states are reduced. The

correlation again has the restarting effect, by reducing the firms’ opportunities of becoming the fu-

ture quality leader. Since (H,L) and (L,H) states provide major upgrading incentives (especially

if k is small), mixing rates and probabilities must decrease to increase the expected duration at the

imbalanced states, compensating the loss from correlated shocks. As ρ → 1, the incentives provided

by such imbalanced states are smaller as such states are less likely to emerge. When ρ = 1, (H,L)

and (L,H) are no longer on path, and the only way to provide upgrading incentives is to reduce the

upgrading probabilities at (L,L), so that the first direct-competition MPE disappears Figure 10

summarizes the changes of MPE under correlated shocks.

While the discussion above focuses on positive correlations, the results and intuitions are sym-

metric under negative correlations as well. The negative correlation increases the expected durations

of imbalanced (H,L) and (L,H) states, leading to the opposite adjustments as in Proposition 14

and Proposition 15.

29We should note that “competition trigger” here is no longer competition trigger any more with positive correla-

tions. Again, (H,H) can transition into (L,L) directly, and firms stop upgrading at (L,L), so that the quality-war

phase does not necessarily last forever. We still keep the term “competition trigger” for consistency.
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Upgrading
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(L,H):

Mixing with h

(L,L):

No Upgrading

c̄

Direct Competition

c̃

(L,H):

Mixing with f

(L,L):

Upgrading

(L,H):

No Upgrading

(L,L):

Mixing with g

Figure 10 MPE with Correlated Shocks

Note: The black arrows on the graph show how the MPE change as ρ increases.

7 Conclusion

This paper has examined how firms compete dynamically in quality and price in the presence of

horizontally heterogeneous consumers. We showed that horizontal differentiation can significantly

alter firms’ quality-investment behavior, joint profits, and social welfare.

More specifically, while investment frequency decreases monotonically with investment costs

when consumers are homogeneous, heterogeneous consumers enable upgrading deterrence, allowing

firms to sustain lower investment frequencies even when upgrading is relatively cheap. When

investment becomes more expensive, deterrence is no longer sustainable, and firms switch to direct

competition, in which the upgrading frequency once again declines with higher costs. This non-

monotonicity in upgrading frequency also creates non-monotonicity in investment efficiency, leading

to under-investment at both low and high cost levels. The quality evolution patterns are robust

under correlated quality shocks.

It is also further demonstrated that horizontal and vertical differentiation can exhibit substi-

tution or complementarity depending on the cost of investment. Higher horizontal differentiation

can either fuel or dampen quality competition. When investment is inexpensive and firms tend

to have similar quality levels, stronger horizontal differentiation fuels competition by enhancing

market power. When investment is costly and firms are more vertically differentiated, stronger

horizontal differentiation dampens quality competition because maintaining a leadership position

becomes less profitable.

Future research could further explore dynamic competition along two dimensions by considering

asymmetric firms or settings with more than two quality levels. Since consumers are transient in

our model, it would also be valuable to examine durable goods markets where past consumers

periodically return.
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A The stage game

A.1 The Social Planner

We first solve the social planner’s stage game.

Stage games (1, 1) and (α, α). We consider (q, q) for some generic q. If k is not too large,

consumers in [0, 1/2) purchase from firm 0, consumers in (1/2, 1] purchase from firm 1, and the

consumer at 1/2 is indifferent. For the indifference consumer, she purchases if q − (k/2) ⩾ 0, or

k ⩽ 2q. The social surplus is

2×
∫ 1

2

0
(q − kx)dx = q − k

4
.

Note that here we utilize the fact that the environment is symmetric.

If k > 2q, some buyers in the middle chooses not to purchase. Let x be the location of the last

consumer who purchases from firm 0. Then,

q − kx = 0 ⇒ x =
q

k
.

The social surplus is

2×
∫ q

k

0
(q − kx)dx =

q2

k
.

Stage game (1, α). There are three cases:

• Firm 0 and firm 1 split the market at some x∗ (and the whole market is covered).

• Firm 0 dominates the market.

• Firm 0 serves the consumers at location [0, x], firm 1 serves the consumers at location [x, 1],

and x < x.

Let’s consider the first case. The location x∗ of the indifference consumer is defined by

q0 − kx∗ = q1 − k(1− x∗) ⇒ x∗ =
1

2
+

1− α

2k
.

It is clear that x∗ > 1/2, and x∗ ⩽ 1 if 1− α ⩽ k, or α ⩾ 1− k. The indifference consumer gets

1− kx∗ =
1 + α− k

2
.

This consumer gets nonnegative payoff if 1 + α ⩾ k, or α ⩾ k − 1. Therefore, if α ⩾ |1 − k|, the
two firms split the market at x∗. The social welfare is∫ x∗

0
(1− kx)dx+

∫ 1

x∗
[α− k(1− x)]dx =

1 + α

2
+

(1− α)2

4k
− k

4
.

The second case happens if x∗ > 1, or 1 − α > k. To verify that firm 0 indeed dominates the

market, consider the consumer at location 1. Purchasing from firm 0 gets 1− k. Since 1− α > k,
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the consumer gets more than α (so that more than 0), which shows that firm 0 indeed dominates

the market. The social surplus is ∫ 1

0
(1− kx)dx = 1− k

2
.

The last case happens if the consumer at x∗ has negative payoff. Formally, x = 1/k as we

defined above. For x, it is defined by

α− k(1− x) = 0 ⇒ x = 1− α

k
.

We need x < x, which implies α < k− 1. Notice that this is indeed the condition for the consumer

at location x∗ gets negative payoff if purchasing. The social surplus is∫ x

0
(1− kx)dx+

∫ 1

x
[α− k(1− x)]dx =

1 + α2

2k

A.2 Duopoly Firms

We first state the best responses of Firm 0, in terms Firm 1’s quality q1 and price p1:

1. If q1 − p1 ⩾ k:

(a) If q0 > 3k + q1 − p1: BR0 = pD0 = q0 − q1 + p1 − k.

(b) If −k + q1 − p1 ⩽ q0 ⩽ q1 − p1 + 3k: BR0 = pS0 = (q0 − q1 + p1 + k)/2.

(c) If q0 < −k + q1 − p1: BR0 is any price higher than q0 − q1 + p1 − k so that firm 0 has

zero demand.

2. If 0 ⩽ q1 − p1 < k:

(a) If q0 > 3k + q1 − p1: BR0 = pD0 = q0 − q1 + p1 − k.

(b) If 3k − 3(q1 − p1) ⩽ q0 ⩽ 3k + q1 − p1: BR0 = pS0 = (q0 − q1 + p1 + k)/2.

(c) If 2k − 2(q1 − p1) ⩽ q0 ⩽ 3k − 3(q1 − p1): BR0 = pF0 = q0 + q1 − p1 − k.

(d) If q0 < 2k − 2(q1 − p1): BR0 = pM0 = q0/2.

3. If q1 − p1 < 0:

(a) If q0 ⩾ 2k: BR0 = q0 − k.

(b) If q1 < 2k: BR0 = pM0 = q0/2.

In general, there are four possible cases: (i) one firm dominates the market, (ii) two firms split

the market with FOC pricing, (iii) two firms split the market with corner solutions, and (iv) two

firms are separated small monopolists. Case (iii) may not be obvious: FOC pricing may not always

leave the middle consumer positive consumer surplus. If this happens, and the quality levels are

not too low, firms will still compete, since the profits of covering a larger market is still higher than

the profits of charging a higher price and losing some markets.
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Table 2 Stage Game Equilibria in (q, q)

Each Firm’s Price Each Firm’s Profit

3k/2 ⩽ q k k/2

k ⩽ q < 3k/2 q − (k/2) (q/2)− (k/4)

q < k q/2 (q2)/4k

We can now use the best responses above to formulate the stage game equilibria. The cases

where the quality levels are the same are relatively easy and we state the result directly in Table 2.

Stage game (1, α). Since α ∈ (0, 1), there are three possible cases in this subgame

• Firm 0 dominates the market.

• The two firms split the market. This includes two scenarios: the indifference consumer has

positive surplus, or the indifference consumer has zero surplus.

• The two firms leave some buyers not served.

We should note that it is impossible that firm 1 dominates the market, given that firm 0 has higher

quality. Also, it is not possible that for some x, consumers in [0, x] purchase from firm 0, and the

remaining consumers choose not to purchase. Here, firm 1 can always charge ε < α and attract

consumers close to 1 to purchase, which is a profitable deviation.

Let’s start from the case that firm 0 dominates the market. We argue that p1 = 0 in such

equilibria. Since firm 0 dominates the market and q1 = α > 0, we must be in Case 1(a) or Case

2(a) regarding firm 0’s best response, meaning that p0 = pD0 (p1) = q0 − q1 + p1 − k. That is, the

consumer at location 1 is indifferent. Suppose that p1 = p̃1 > 0. Given p0 = pD0 (p1), firm 1 can

charge p̃1/2 instead, so that consumers closer to 1 will purchase from firm 1, leading to a positive

profit. This is a profitable deviation exists for any positive p1. Therefore, in any equilibrium that

firm 0 dominates the market, firm 1’s price p1 must be 0. Then, following the best response function

of firm 0, firm 0 dominates the market if q0 − q1 = 1− α > 3k. Firm 0 charges 1− α− k, which is

also firm 0’s equilibrium profit.

Next, consider the case that they split the market. Depending on parameters, we may be

in Cases 1(b), 2(b), or 2(c) of firm 0’s best response. For Cases 1(b) and 2(b), the indifference

consumer has (weakly) positive surplus, and firms chooses the FOC price. This leads to

p0 = k +
q0 − q1

3
, and p1 = k +

q1 − q0
3

.

Note that if 1−α > 3k, firm 0 will dominate the market. Therefore, the prices here are nonnegative.

The indifference consumer is

x∗ =
1

2
+

q0 − q1
6k

.
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Again, if 1− α ⩽ 3k, x∗ is between 1/2 and 1. And the indifference consumer gets

q0 − p0 − kx∗ =
q0 + q1 − 3k

2
.

Therefore, the indifference consumer has nonnegative surplus if 1+α ⩾ 3k. In this case, both firms

split the market at x∗.

If 1 + α < 3k, the firms cannot split the market at the FOC prices. We consider the last

case first, that is, the case where two firms act as monopolists. Firm 0 charges q0/2 and serves

consumers in [0, x], where x = q0/2k, while firm 1 charges q1/2 and serves consumers in [x, 1], where

x = 1− (q1/2k). If both firms act as monopolists, we must have x < x, or q0 + q1 = 1 + α < 2k.

Therefore, the case left is 2k ⩽ 1 + α < 3k. This is the case that two firms still split the

market at some x∗, but this indifference consumer has zero surplus. In other words, firm 0’s best

response at Case 2(c), and similar for firm 1. We should note that there are many equilibria. Both

firms are now restricted by the same constraint – the boundary consumer must have zero consumer

surplus, which leads to multiplicity. It is possible to pick a natural equilibrium pricing profile, for

1 + α = mk, m ∈ [2, 3),

p0 =
m− 1

m
and p1 =

(m− 1)α

m
,

which take the uniform functional form of the equilibria at both boundaries, and the equilibrium

pricing is also continuous. Still, as the condition assumed in the paper, this case is not used in the

analysis.

We can summarize the results in Table 3.

Table 3 Stage Game Equilibria in (1, α)

p0 p1 Firm 0’s profit Firm 1’s profit

1− α > 3k 1− α− k 0 1− α− k 0

1− α ⩽ 3k, 1 + α ⩾ 3k k +
1− α

3
k − 1− α

3

(3k + 1− α)2

18k

(3k + α− 1)2

18k

1− α ⩽ 3k, 2k ⩽ 1 + α < 3k 1− k

1 + α
α− kα

1 + α

1 + α− k

(1 + α)2
(1 + α− k)α2

(1 + α)2

1− α ⩽ 3k, 1 + α < 2k
1

2

α

2

1

4k

α2

4k
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B Proof of Results in Section 3

Proof of Proposition 2

If the social planner chooses not to upgrade at (L,L), the value function is

WN (L,L) = α∆+ e−r∆WN (α, α).

This gives WN (L,L) = α/r in the limit. If the social planner chooses to upgrade instead, the value

function is

WU (L,L) = −c+ e−β∆
[
1dt+ e−r∆WU (1, α)

]
+
(
1− e−β∆

) [
αdt+ e−r∆WU (α, α)

]
WU (H,L) = e−β∆

[
1dt+ e−r∆WU (1, α)

]
+
(
1− e−β∆

) [
αdt+ e−r∆WU (α, α)

]
In the limit, this gives

WU (L,L) =
1

r
− (β + r)c

r
.

The result is obtained by comparing WN (L,L) and WU (L,L). ■

Proof of Lemma 3

For this and the next two proofs, we consider the more general k > 0 since such MPE also exist

under k > 0. The results under k = 0 are obtained by setting k = 0 in the proofs.

Define

δ = e−r∆, b = 1− e−β∆, and ξ =
1− e−r∆

r
.

In particular, ξ acts as ∆, only it has discount baked in.

Also, notice that firms always have no action at (H,H), so that the value function at (H,H) is

always the same.

V0(H,H) = (1− b)2(π0(H,H)ξ + δV0(H,H)) + b(1− b)(π0(H,L)ξ + δV0(H,L))

+ b(1− b)(π0(L,H)ξ + δV0(L,H))

+ b2(π0(L,L)ξ + δV0(L,L)).

(2)

In case that firms never upgrades, the remaining value functions of Firm 0 are

V0(H,L) = (1− b)(π0(H,L)ξ + δV0(H,L)) + b(π0(L,L)ξ + δV0(L,L)),

V0(L,H) = (1− b)(π0(L,H)ξ + δV0(L,H)) + b(π0(L,L)ξ + δV0(L,L)),

V0(L,L) = π0(L,L)ξ + δV0(L,L).

Since this is a symmetric profile, it is sufficient to consider firm 0 only. We omit the solutions of

the value functions as they are usually too long (by including many higher order terms).
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No profitable deviations at (L,H) means

V0(L,H)− [−c+ V0(H,H)] ⩾ 0,

which is just the application of one-shot deviation principle. Substitute the value function solutions

to the LHS, then take the limit to get

2β2c+ cr2 + 3βcr − π0(H,H)(β + r)− βπ0(H,L) + π0(L,H)(β + r) + βπ0(L,L)

(β + r)(2β + r)
,

so that we need

c(β + r) >
(π0(H,H)− π0(L,H))(β + r)

2β + r
+

β(π0(H,L)− π0(L,L))

2β + r
. (3)

No profitable deviations at (L,L) means

V0(L,L)− [−c+ V0(H,L)] ⩾ 0.

The procedure of simplication is the same, and we acquire the condition

c(r + β) > π0(H,L)− π0(L,L).

Notice that the RHS is larger than the RHS of (3), so that this is the condition needed. In

particular, notice that this gives c̄ = [π0(H,L)−π0(L,L)]/(r+β). It is also easy to verify that the

value functions are always positive under this condition. ■

Proof of Proposition 4

Let xh be the upgrade probability of Firm 1. Since Firm 0 is indifferent between upgrading or not

at (L,H), we can first assume Firm 0 does not upgrade at (L,H) to solve the value function, then

use the indifference condition to solve for xh.

Recall that V0(H,H) is given in (2). The value remaining functions are

V0(H,L) = xhV0(H,H) + (1− xh) [(1− b)(π0(H,L)ξ + δV0(H,L)) + b(π0(L,L)ξ + δV0(L,L))]

V0(L,H) = (1− b)(π0(L,H)ξ + δV0(L,H)) + b(π0(L,L)ξ + δV0(L,L)),

V0(L,L) = −c+ V0(H,H).

And the indifference condition is

V0(L,H) = −c+ V0(H,H).

This gives the expression of xh. (The exact expression contains many terms due to the discrete-time

setup and is omitted.) Substitute this back to the value functions, we get the expression of the
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value functions under the equilibrium. In the limit, xh → 0, so that it sufficient to check that the

limit of xh/t,

−2β2c− cr2 − 3βcr + π0(H,H)(β + r) + βπ0(H,L)− π0(L,H)(2β + r)

c(β + r)− π0(H,H) + π0(L,H)

is positive to ensure xh is a well-defined probability when ∆ is sufficiently small. This is one of the

conditions to establish MPE. The other two conditions are no-profitable deviation condition, but

they are most trivial here. Notice that the incentives of upgrading at (L,L) and (L,H) are the

same, which reduces the two conditions to just one and is guaranteed by the indifference condition.

The same upgrading incentive does not rely on k = 0. To see this:

• At (L,L), if Firm 0 upgrades, the state before nature’s decision is (H,H). If Firm 0 does not

upgrade, Firm 1 upgrades, and the state before nature’s decision is (L,H).

• At (L,H), if Firm 0 upgrades, the state before nature’s decision is (H,H). If Firm 0 does not

upgrade, Firm 1 does not have any action, and the state before nature’s decision is (L,H).

Since the interim states before nature’s shock(s) are the same, the distributions of states after

nature’s decision are also the same, meaning that the stage payoffs and continuation states are the

same, which completely aligns upgrading incentives.

Therefore, it suffices to consider that xh/t has a positive limit, which requires

π0(H,H)− π0(L,H) < c(β + r) <
π0(H,H)(β + r)

2β + r
+

βπ0(H,L)

2β + r
− π0(L,H). ■

Proof of Proposition 5

The idea is similar to the proof of Proposition 4: start by assuming that Firm 1 mixes at (L,L)

with probability xl. Formulate the value functions under the assumption that Firm 0 does not

upgrade. The value functions are

V0(H,L) = (1− b)(π0(H,L)ξ + δV0(H,L)) + b(π0(L,L)ξ + δV0(L,L)),

V0(L,H) = (1− b)(π0(L,H)ξ + δV0(L,H)) + b(π0(L,L)ξ + δV0(L,L)),

V0(L,L) = xlV0(L,H) + (1− xl)(π0(L,L)ξ + δV0(L,L)).

The indifference condition is

V0(L,L) = −c+ xlV0(H,H) + (1− xl)V0(H,L).

This gives xl.
30 After taking the limit,

xl =
(2β + r)(−c(β + r) + π0(H,L)− π0(L,H))

(π0(H,L)− π0(H,H))(β + r)
.

30Technically, this is a quadratic equation of xl and has two solutions. Nevertheless, the other solution is 0.

46



Observe that xl does not converge to 0, so that the strategy is a probabilistic mixing instead of

rate mixing. This also means the limit must be between 0 and 1. This gives

π0(H,H)(β + r)

2β + r
+

βπ0(H,L)

2β + r
− π0(L,H) < c(β + r) < π0(H,L)− π0(L,H).

There is no profitable deviation at (L,L) due to the indifference condition. At (L,H), the no

profitable deviation is that

V0(L,H)− (−c+ V0(H,H)) ⩾ 0.

After taking the limit, this simplifies to

π0(H,H)(β + r)

2β + r
+

βπ0(H,L)

2β + r
− π0(L,H) < c(β + r).

Therefore, the profile is an MPE in the limit if

π0(H,H)(β + r)

2β + r
+

βπ0(H,L)

2β + r
− π0(L,H) < c(β + r) < π0(H,L)− π0(L,H). ■

Proof of Theorem 6

This is shown by exhausting all possibilities of symmetric MPE. Here, we discuss the pure strategy

symmetric profiles only and leaving the mixed strategy symmetric profiles to online appendix so

that the proof is not overly long.

As we have discussed after Theorem 6, there is no always-upgrading MPE. Next, consider that

both firms upgrade at (L,L) but not at (H,L)/(L,H). It can be verified that the limits of the

value functions of Firm 0 are

V0(H,H) = −β(α+ 2βc− 1)

r(3β + r)
,

V0(H,L) = −αβ2 + 3αβr + αr2 + 2β3c+ 3β2cr − β2 + βcr2 − 3βr − r2

r(β + r)(3β + r)
,

V0(L,H) = −αβ2 + 2β3c+ 3β2cr − β2 + βcr2

r(β + r)(3β + r)
,

V0(L,L) = −αβ + 2β2c+ 3βcr − β + cr2

r(3β + r)
.

We can then verify that the two no-profitable-deviation conditions result to the direct opposite

signs. The only c that maintain this MPE is

c =
β − αβ

(β + r)(2β + r)
,

but this is the cost level at the boundary of the two MPE in Proposition 4 and Proposition 5, and

this is exactly the limiting MPE at the boundary.

We have also discussed the upgrading deterrence MPE after Theorem 6, which also only exists

at c = 0. The final pure symmetric profile is always upgrading, which is covered in Lemma 3. ■
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Proof of Proposition 8

We have shown the calculation of joint profits under the MPE in Proposition 4 before Proposition 8.

Substitute flow payoffs and mixing rates into (1), the joint profit is

2βcr(−α+ c(β + r) + 1)

−αβ + β + c (β2 − r2)
.

We now consider the MPE in Proposition 5. Let

y(c) =
g(c)(1− g(c))

2g(c)(1− g(c)) + g2(c)

be the probability that the realized outcome is a quality differentiated state. The state transition

must satisfy

βτB + βy(c)τLH = [β(1− 2y(c)) + βy(c)] τHL.

And the expression regarding τLH is symmetric. This gives

τB =
1− 2y(c)

3− 2y(c)
, and τHL = τLH =

1

3− 2y(c)
.

The upgrading cost is paid at rate

β(τHL + τLH) [y(c) + y(c) + 2(1− 2y(c))] .

Together, we get the joint profit

2(1− α)r(α− c(β + r)− 1)

2β(α− βc− 1) + 3r(α− βc− 1)− cr2
.

The remaining part is to verify that both joint profits are increasing in c and is continuous at the

boundary, which are just algebra and omitted here. ■

C Proof of Results in Section 4

Proof of Proposition 9

We show the case that 0 < α < k/2. For the case that α is larger, the method is the same. The

only change is the stage social surplus at (L,L) and (L,H), as shown in Appendix A.

Consider the never-upgrading policy. The social planner’s value function is formulated in the

similar fashion. For example,

W (H,H) = (1− b)2 [w(H,H)ξ + δW (H,H)] + 2b(1− b) [w(H,L)ξ + δW (H,L)]

+ b2 [w(L,L)ξ + δW (L,L)] .
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At (L,L), no profitable deviation to (H,L) requires

W (L,L)− (−c+W (H,L)) ⩾ 0,

which, in the limit, simplifies to

c >
−2α2 − k2 + 2k

2k(β + r)
.

Similarly, no profitable deviation to (H,H) requires, in the limit,

c >
−4α2(3β + r) + βk(12− 5k)− (k − 4)kr

8k (2β2 + r2 + 3βr)

At (H,L), no profitable deviation to (H,H) requires, in the limit,

c >
−4α2β + k2(r − β) + 4βk

4k(β + r)(2β + r)
.

All three conditions must be satisfied, and the RHS of the three conditions need to be compared. It

turns out the the RHS of the first condition is the largest, which means it is the condition needed.

The procedure for the other policies are similar. Here, we state the limit of the value functions

under the other two optimal policies. For the policy that upgrades one product at (L,L) and does

not upgrade at (H,L), the value functions W (H,H),W (H,L), and W (L,L) in the limits are

−4β(2βc+ k − 2) + (k − 4)r

4r(2β + r)
, −2βc+ k − 2

2r
, and − 2c(β + r) + k − 2

2r
.

For the always upgrading policy, the same value functions, in the limits, are

−8βc+ k − 4

4r
, −4c(2β + r) + k − 4

4r
, and − 8c(β + r) + k − 4

4r
.

For each policy, the cost range is determine by three no-profitable-deviation conditions at two states,

just as the argument above. We also checked the policies that are not consistent, as mentioned

after Proposition 9, and they are indeed never optimal. ■

Proof of Theorem 10

The expressions of the time distributions and rate of upgrading costs are shown in the proof of

Proposition 8. We here state the time distributions and long-run joint profits directly (using the

values under k > 0). In the MPE where both firms upgrade at (L,L) and mixing at the quality-

follower state,

τB =
k(r − 2β)− 2

(
(α− 1)β + c(β + r)2

)
−2β(α+ 2k − 1) + 2β2c+ r(k − 2cr)

.

And the long-run joint profit is

r
(
−4βc(−α+ c(β + r) + 1) + 2ck(5β + r)− k2

)
2β(α+ 2k − 1)− 2β2c+ r(2cr − k)

.
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In the MPE that both firm probabilistically mixing at (L,L) and do not upgrade at the quality-

follower states,

τB = − (2β + r)(a+ c(β + r) + k − 1)

−(a+ k − 1)(2β + 3r) + c(2β + r)(β + r)− 2k(β + r)

And the joint profits are

− r(2α+ 3k − 2)(a− c(β + r) + k − 1)

2β(α− βc+ 2k − 1) + r(3α− 3βc+ 5k − 3)− cr2
.

What remains is taking derivatives. It turns out the same factor, 1−α− 3c(r+ β), determines the

sign of the derivatives ∂τB/∂k, which is a strictly decreasing function of c, positive at the lower

bound of the MPE c3, and negative at the upper bound c̄. More specifically, at lower bound c3,

(r + β)c3 = πi(H,H)− πi(L,H) = k/2, and the factor is

1− α− 3k

2
⩾ 3k − 3k

2
> 0,

where the second inequality follows from the assumption that α ⩽ 1 − 3k. At the upper bound,

(r + β)c̄ = πi(H,L)− πi(L,L). Depending on α, this is
−2 + 2α+

9k

2
, if

3k

2
⩽ α ⩽ 1− 3k,

−2 +
7α

2
+

9k

4
, if k ⩽ α <

3k

2
,

−2 + 2α+
3α2

4k
+ 3k, if 0 < α < k.

In the first case, since −2+2α ⩽ −6k, it is negative. In the second case, notice that it is increasing

in α and k, so that the maximum is obtained at α = k and k = 2/9, which is −1/3 < 0. At the last

case, first observe that it is increasing in α, so that it is less than −2 + 23k/4, by setting α = k.

Then, this is increasing in k, and the maximum is obtained at k = 2/9, which gives −13/18 < 0.

The existence of ĉ follows from the intermediate value theorem, and the uniqueness of ĉ follows

from the fact that 1− α− 3(r + β)c is strictly decreasing in c. ■

Proof of Proposition 12

We show the simpler first MPE here, and leaving the second mixed strategy deterrence to the online

appendix. The value functions are

V0(H,L) = V0(H,H), V0(L,H) = −c+ V0(H,H), and V0(L,L) = π0(L,L)ξ + δV0(L,L).

The no-profitable-deviation condition at (L,L) simplifies to c > (π0(H,H) − π0(L,L))/(r + β),

which is just c > c1. The no-profitable-deviation condition at (L,H) involves higher order terms
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(as the first order terms converge to exactly 0)31 and simplifies to

c(β + r) < π0(H,H)− π0(L,H)r

β + r
− βπ0(L,L)

β + r
.

Notice that the RHS is (r + β)c2.

In the mixed-strategy deterrence MPE, the procedure still involves first solving the value func-

tion (by assuming that Firm 0 does not upgrade), and then use the indifference condition of Firm

0 to solve the mixing probability of Firm 1 in the equilibrium. This is similar to the procedure in

the proof at Appendix B. It is then shown that the probability converges to a rate in the limit, and

one need to check (i) the rate is weakly positive, and (ii) there is no profitable deviation at (L,L)

(state (L,H) is covered by the indifference condition). ■

Discussions of Symmetric MPE

The remaining symmetric MPE mentioned at the end of subsubsection 4.2.2 is the following:

• At (L,L), both firms upgrade with probability

π0(H,L)− π0(H,H)− π0(L,H) + π0(L,L)

2(π0(H,L)− π0(H,H))

−

√√√√√
4(π0(H,L)− π0(H,H))(−βc− cr + π0(H,H)− π0(L,L))

+ (−π0(H,H) + π0(H,L)− π0(L,H) + π0(L,L))
2


2(π0(H,L)− π0(H,H))

• At (L,H)/(H,L), the corresponding firm upgrades for sure.

This is an MPE if π0(H,H)− π0(L,L) ⩽ c(r+ β) < π0(H,H)− π0(L,H). Observe that this range

is fully covered by the alway-upgrading MPE. Also, this MPE is outcome equivalent to the always-

upgrading MPE, given that the upgrade is probabilistic. For this reason, it suffices to consider the

always-upgrading MPE.

We also need to note that the joint profits in joint-profit-maximizing MPE selection standard

are not the same as the long-run average joint profits. In the previous case, it can be considered

as a firm’s decision problem. As an equilibrium refinement, it considers the possible choice of

the firms, and firms make decisions based on the value functions. The joint-profit maximization

standard there means that state by state, the sum of the two firms value functions is the largest

among all such sums. Importantly, firms discount the future under this refinement. In this sense,

the front-load upgrading costs at lower-quality states can have a significant impact on the firms’

31Checking higher order terms when the first order terms converge to 0 is necessary: this guarantees that the

equilibrium in consideration is indeed supported in a discrete time setup, namely, when ∆ is small but strictly

positive.
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value functions. It then can be verified that when there is a multiplicity, firms always prefer the

equilibria with fewer upgrades.

In the latter case, the term “long-run average joint profits” is a welfare consideration. It is

considered from the planner’s perspective when the initial state does not matter any longer. It

utilize the Abel-Cesaro equivalence so that it seems that there is no discount. In particular, the

upgrading costs are not front loaded.

We now consider firms’ standard (i.e., value function) to resolve multiplicity. Multiplicity exists

under three regions: two deterrence region, and the higher-cost no upgrade region. We here consider

the first deterrence region, where the two MPE in considerations are: (i) Always upgrading, and

(ii) Pure-punishment upgrading deterrence in Proposition 12. We will use c1, which indicates that

in this multiplicity region, (r + β)c ⩾ π0(H,H)− π0(L,L).

Notice that the two MPE coincide as long as the initial state is not (L,L), which suggests that

it suffices to consider the difference of V0(L,L). Below, we consider

V D
0 (L,L)− V A

0 (L,L), (4)

where the superscript D means “deterrence” and the superscript A means “always upgrading”.

The difference is evaluated at ∆ → 0. Since π0(L,L) depends on α, we need to consider three

cases:

• 3k/2 < α < 1− 3k. The difference in (4) is 2c(r + β)/r. This is always positive.

• k < α < 3k/2. The difference in (4) is

2α− 3k + 4c(r + β)

2r
,

which is increasing in c. Substitute the lower bound (r + β)c ⩾ π0(H,H) − π0(L,L), and

since π0(L,L) = (α/2)− (k/4) in this case, the difference is exactly 0 at the lower bound of

c and become positive in the multiplicity region.

• k < α < 3k/2. The difference in (4) is

α2 − 2k(k − 2c(β + r))

2kr

which is again increasing in c. Given that π0(L,L) = α2/4k in this case, the difference is

again exactly 0 at the lower bound of c and become positive in the multiplicity region.

The comparisons for the remaining two regions are similar and mostly algebraic, which we omit

here.

Proof of Corollary 13

For the ease of notations, instead of considering c directly, we consider c(r + β) instead. We start

with the upper boundaries. The firms stop upgrading at π0(H,L) − π0(L,L). To avoid too many
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case-by-case discussions involved at π0(L,L), we consider a large π0(H,L)− π0(L,H) = 1−α− k,

and show this is still lower than the cost where the social planner stops upgrading. If α < k/2, the

social planner’s boundary is
−2α2 − k2 + 2k

2k

and the difference between the social planner’s boundary and the firms’ boundary is

α− α2

k
+

k

2
,

which is positive under the given range. When α > k/2, the social planner’s boundary is 1−α−k/4,

which is obviously higher.

For the lower bound, notice that the social planner starts to upgrade at k/4, while the firms’

threshold is (r + β)c3 = k/2. ■

D Discussions of Asymmetric MPE

There are also asymmetric MPE in this game, which are summarized in section 5. In this section,

I first give the specific mixing probabilities or rates and then discuss the details of the substitution

and complementary relations presented in section 5.

Mixing behaviors in asymmetric MPE. In Case A, for the firm who upgrades at (L,L)

with a rate, the rate is

β2c+ cr2 + 2βcr − π0(H,H)(β + r) + π0(L,H)r + βπ0(L,L)

−c(β + r) + π0(H,H)− π0(L,H)
.

For the firm who upgrades at the quality-follower state with a rate, the rate is

(β + r)((π0(H,L)− π0(L,L))− c(β + r))

c(β + r)− (π0(H,H)− π0(L,L))
.

In Case B, let zlp be a constant between 0 and 1. an MPE as described in Case B exists if

π0(H,H)− π0(L,H) < c(β + r) <
π0(H,H)(β + r)

β + r + βzlp
+

π0(H,L)(βzlp)

β + r + βzlp
− π0(L,H).

For the firm upgrades at (L,L) for sure, the mixing rate at the quality-follower state is

−2β2c− cr2 − 3βcr + π0(H,H)(β + r) + βπ0(H,L)− π0(L,H)(2β + r)

c(β + r)− π0(H,H) + π0(L,H)
.

For the firm who plays a mixed strategy at (L,L), the mixing probability is zlp. The rate of

upgrading at the quality follower state is

β2c+ cr2 + 2βcr + βcrzlp + β2czlp − π0(H,H)(β + r)− βπ0(H,L)zlp + π0(L,H)(β + r + βzlp)

−c(β + r) + π0(H,H)− π0(L,H)
.
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In this case, one firm plays the exact same strategy as in the symmetric MPE, leaving the

opponent firm indifferent between upgrading or not at (L,L). In the symmetric MPE, the opponent

firm has the strongest inclination zlp = 1 to upgrade, but in general an MPE can exist for the

opponent with any upgrading inclination.

In Case C, firms play pure strategies, so that the mixing behaviors are irrelevant.

Substitution and complementary relations. For Case A, in the case that 0 < α < k and

k → 0, the sign of ∂τB/∂k is determined by

−4β(β + r)(βc− (1− α))

α2r2
.

Since r > 0, (r + β)c < 1− α = π0(H,L), this is positive. Alternatively, pick any k ∈ (0, 2/9), and

let α → 0, the sign of the same derivative is determined by

−8k4(β + r)3(3c(β + r)− 1)(k − 2c(β + r))2,

and this is again positive since 3c(β+ r) < 3k/2 < 1, given the range of c under Case A. Therefore,

under Case A, for small enough α, or small enough k (and α < k), the two dimensions of product

differentiation exhibits substitution relations.32

For Case B, pick the simple case such that the firm mixes at (L,L) will not choose to upgrade

at (L,H). Let this firm be firm 0, without loss of generality. The mixing probability zlp is now

zl ≡
r + β

β

c(r + β)− (π0(H,H)− π0(L,H))

π0(H,L)− π0(L,H)− c(r + β)
.

Firm 1’s strategy is the same as in the symmetric direct-competition MPE. τB is defined in the

same way: the time spent at (H,H) in the equilibrium. It turns out that for c(r+ β) close to k/2,

the lower bound, ∂τB/∂k < 0.33

To see why the sign is opposite to the sign under the symmetric MPE, observe that ∂zl/∂k < 0.

That is, while firm 1 still upgrades more as k increases, firm 0 now upgrade less as k increases.

This is because firm 0 is the disadvantageous player who is dominated in competition. As firm 1

becomes more aggresive given the higher k, firm 0 is closer to a chicken player.

E Proof of Results in Section 6

Proof of Proposition 14

The proof uses the same idea: solving the value functions and check the one-shot deviations. The

value function V (H,H) is different though because of correlations. In particular, one needs to use

the probabilities in Table 1 to replace the probabilities under independence.

32The general expressions of ∂τB/∂k are rather complicated, and it is difficult to determine the exact sign.
33And for larger c, the sign in general depends on the relative size of r and β.
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This procedure gives the same c1 and c3, and

(r + β)c2 = π0(H,H)− π0(L,H)(βρ+ r)

β + r
− π0(L,L)(β(1− ρ))

β + r
.

Then it is easy to see that c2 is increasing in ρ and becomes c3 when ρ = 1, since (r + β)c3 =

π0(H,H) − π0(L,H). h(c) is a bit longer, but the derivative ∂h/∂ρ has the following relatively

simple form

β(β + r)2(c(β + r)− π0(H,H) + π0(L,H))(c(β + r)− π0(H,L) + π0(L,H))

(c(β + r)2 − π0(H,H)(β + r) + π0(L,H)(βρ+ r)− βπ0(L,L)ρ+ βπ0(L,L))
2

The denominator is clearly positive. The two factors containing (r + β)c are both negative since

c ⩽ c3. It follows that the derivative is positive. ■

Proof of Proposition 15

The proof starts with the same idea again by solving the value functions and check the indifference

condition, just as the case where ρ = 0. This gives the same c3 and c̄, and

(r + β)c̃ =
π0(H,H)(β + r)

−βρ+ 2β + r
+

π0(H,L)(β − βρ)

−βρ+ 2β + r
− π0(L,H).

It is easy to see that c̃ is decreasing in ρ and becomes c3 when ρ = 1.

We also have
∂f

∂ρ
=

β(c(β + r)− π0(H,L) + π0(L,H))

c(β + r)− π0(H,H) + π0(L,H)
.

The denominator is positive since c > c3, and the numerator is negative since c < c̄, so that the

derivative is negative.
∂g

∂ρ
=

β(c(β + r)− π0(H,L) + π0(L,H))

(π0(H,L)− π0(H,H))(β + r)

The denominator is positive, and the numerator is negative since c < c̄, so that the derivative is

negative. ■
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